Evaluation of Search Performance of Evolutionary Computation by Transfer Entropy

  • Hiroshi SatoEmail author
Conference paper
Part of the Proceedings in Adaptation, Learning and Optimization book series (PALO, volume 12)


In Evolutionary Computation, the search space made from genotype and the search space made from phenotype is usually quite different. This study tries to reveal the relation among genotype space, phenotype space, and fitness landscape using transfer entropy. The preliminary experiment shows a promising result.


Evolutionary computation Genetic algorithm Genotype Phenotype Diversity Search performance Entropy Transfer entropy 


  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, Reading (1989)zbMATHGoogle Scholar
  2. 2.
    Mengshoel, O.J., Goldberg, D.E.: The crowding approach to niching in genetic algorithms. Evol. Comput. 16(3), 315–354 (2008)CrossRefGoogle Scholar
  3. 3.
    Mori, N., Yoshida, J., Tamaki, H., Nishikawa, H.: A thermodynamical selection rule for the genetic algorithm. In: Proceedings of 1995 IEEE International Conference on Evolutionary Computation, pp. 188–192 (1995)Google Scholar
  4. 4.
    Satoh, H., Yamamura, M., Kobayashi, S.: Minimal generation gap model for GAs considering both exploration and exploitation. In: Proceedings of the IIZUKA 1996, pp. 494–497 (1996)Google Scholar
  5. 5.
    Mühlenbein, H.: The equation for response to selection and its use for prediction. J. Evol. Comput. 5(3), 303–346 (1997)CrossRefGoogle Scholar
  6. 6.
    Baluja, S.: Population-based incremental learning: a method for integrating genetic search based function optimization and competitive learning, Technical Report, Carnegie Mellon University (1994)Google Scholar
  7. 7.
    Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE Trans. Evol. Comput. 3(4), 287–297 (1999)CrossRefGoogle Scholar
  8. 8.
    Schreiber, T.: Measuring information transfer. Phys. Rev. Lett. 85, 461–464 (2000)CrossRefGoogle Scholar
  9. 9.
    Granger, G.W.J.: Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3), 424–438 (1969)CrossRefGoogle Scholar
  10. 10.
    Yang, X.S.: Test problems in optimization. In: Xin-She, Y. (ed.) Engineering Optimization: An Introduction with Metaheuristic Applications. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  11. 11.
    Koabayashi, S.: The frontiers of real-coded genetic algorithms. J. Japanese Soc. Artif. Intell. 24(1), 128–143 (2009). (in Japanese)Google Scholar
  12. 12.
    Scrucca, L.: GA: a package for genetic algorithms in R. J. Stat. Softw. 53(4), 1–37 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.1-10-20 HashirimizuYokosuka, KanagawaJapan

Personalised recommendations