Advertisement

Advanced Human Centric 5G-IoT in a Smart City: Requirements and Challenges

  • Dragorad MilovanovicEmail author
  • Vladan Pantovic
  • Natasa Bojkovic
  • Zoran Bojkovic
Conference paper
  • 456 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11956)

Abstract

The concept of a smart city (SC) is developed on advanced information-communication technologies (ICT). The role of new 5G mobile wireless systems and Internet of Things (IoT) is discussed as essential for a successful SC infrastructure for interconnecting citizens in physical and virtual worlds. IoT-based smart cities can provide various kinds of services for citizens, including smart home, smart energy and meter systems, vehicular traffic and transportation, environmental pollution, smart health. The services are transforming cities by improving infrastructure and efficiency of the everyday activities. The huge development of smart devices, novel communication, computing and control technologies have paved the way for 5G-IoT advancement. At the same time the final goal is to provide efficient human-centric communication. In this article smart cities infrastructure evolution is presented. Moreover, an overview of the role of 5G-IoT including up-to-date development is described. Later, we continue with human-centric 5G-IoT in SC. Finally, in order to give future research directions several challenges are highlighted.

Keywords

Smart environment Smart city 5G IoT HCI 

References

  1. 1.
    Qian, Y., et al.: The Internet of Things for smart cities: technologies and applications. IEEE Netw. 33(2), 4–5 (2019)CrossRefGoogle Scholar
  2. 2.
    Urban Population Growth: World Health Organization, GHO Data 2019Google Scholar
  3. 3.
    Milovanovic, D., Bojkovic, Z., Pantovic, V.: Evolution of 5G mobile broadband technology and multimedia services framework. In: Fleming, P., Lacquet, B.M., Sanei, S., Deb, K., Jakobsson, A. (eds.) ELECOM 2018. LNEE, vol. 561, pp. 351–361. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-18240-3_32CrossRefGoogle Scholar
  4. 4.
    Ford, R., et al.: Achieving ultra-low latency in 5G Milimeter Wave cellular networks. IEEE Commun. Mag. 55(3), 196–203 (2017)CrossRefGoogle Scholar
  5. 5.
    Wu, D., Zhan, L., Cai, Y.: Social-aware rate based content sharing mode selection for D2D content sharing scenarios. IEEE Trans. Multimedia 19(11), 2571–2582 (2017)CrossRefGoogle Scholar
  6. 6.
    Hu, H., et al.: Joint content replication and request routing for social video distribution over cloud CDN: a community clustering method. IEEE Trans. CSVT 26(7), 1320–1333 (2016)Google Scholar
  7. 7.
    Chaurabi, H., et al.: Understanding smart cities: an integrative framework. In: Proceedings of HICSS, pp. 2289–2297 (2012)Google Scholar
  8. 8.
    Fan, W., Bifet, A.: Mining Big Data: current status and forecast to the future. ACM SIGKDD Explor. Newsl. 14(2), 1–5 (2013)CrossRefGoogle Scholar
  9. 9.
    Yaqoob, L., et al.: Enabling communication technologies for smart cities. IEEE Commun. Mag. 55(1), 112–120 (2017)CrossRefGoogle Scholar
  10. 10.
    Mehmood, Y., et al.: Internet-of-Things-based smart cities: Recent advances and challenges. IEEE Commun. Mag. 55(9), 16–24 (2017)CrossRefGoogle Scholar
  11. 11.
    Zhou, L., et al.: Greening for smart cities: energy-efficient massive content delivery via D2D communications. IEEE Trans. Ind. Inform. 14(4), 1626–1634 (2018)CrossRefGoogle Scholar
  12. 12.
    Zhao, L., et al.: Optimal edge resource allocation in IoT-based Smart Cities. IEEE Netw. 33(2), 30–35 (2019)CrossRefGoogle Scholar
  13. 13.
    Wu, S., et al.: Survey on prediction algorithms in smart homes. IEEE J. Internet Things 4(3), 636–644 (2017)CrossRefGoogle Scholar
  14. 14.
    Wu, D., et al.: Optimal content sharing mode selection for social-aware D2D communications. IEEE Wirel. Commun. Lett. 7(6), 910–913 (2018)CrossRefGoogle Scholar
  15. 15.
    Zhou, L., et al.: When collaboration hugs intelligence content delivery over ultra-dense networks. IEEE Commun. Mag. 55(12), 91–95 (2017)CrossRefGoogle Scholar
  16. 16.
    Hao, Y., et al.: Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching and communication in heterogeneous IoT. IEEE Netw. 33(2), 58–64 (2019)CrossRefGoogle Scholar
  17. 17.
    Yan, Y., et al.: An efficient security protocol for advanced metering infrastructure in smart grid. IEEE Netw. 27(4), 64–71 (2013)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Lin, Y., et al.: A survey on Internet of Things: Architecture, enabling technology, security and application. IEEE J. Internet Things 4(5), 1125–1142 (2017)CrossRefGoogle Scholar
  19. 19.
    Ometov, A., et al.: Challenges of multi-factor authentication for securing advances IoT applications. IEEE Netw. 33(2), 82–88 (2019)CrossRefGoogle Scholar
  20. 20.
    Cano, J.C., et al.: Evolution of IoT: an industry perspective. IEEE IoT Mag. 1(2), 82–88 (2018)Google Scholar
  21. 21.
    Merdrignac, P., et al.: Fusion of perception and V2P communication systems for the safety of vulnerable road users. IEEE Trans. Intell. Transp. Syst. 18(7), 1740–1751 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Dragorad Milovanovic
    • 1
    Email author
  • Vladan Pantovic
    • 2
  • Natasa Bojkovic
    • 1
  • Zoran Bojkovic
    • 1
  1. 1.University of BelgradeBelgradeSerbia
  2. 2.Union – Nikola Tesla UniversityBelgradeSerbia

Personalised recommendations