Advertisement

Preliminary Evaluation of Emergency Shelters for Disasters Associated with Landslides at the Hydrographic Basin of Corrego D’Antas, Nova Friburgo, Rio de Janeiro, Brazil

  • Tomás Coelho Netto DuekEmail author
  • Leonardo Esteves de Freitas
  • Marcos Barreto de Mendonça
Chapter
  • 3 Downloads
Part of the Climate Change Management book series (CCM)

Abstract

Socio-environmental disasters associated with landslide events are usually triggered by intense rainfall. In Southeastern Brazil, rains are becoming more severe, reaching more often extreme values due to climate change, making it increasingly relevant to implement risk management processes capable of reducing its consequences. In disaster emergency situations, shelter must be provided before, during and after the occurrence of the adverse event, in order to minimize its consequences. The emergency shelter’s adequacy evaluation intends to establish common minimum requirements to protect public health, safety and general the well being for those affected by disasters. In 2011, a major disaster occurred in the mountainous region of Rio de Janeiro State in Brazil. Some deaths could have been avoided with proper planning on where people at risk should take shelter. The purpose of this study is to propose and apply a methodology of quantitative-qualitative assessment of emergency shelters suitability, putting forward, through a multi-criteria analysis, an Evaluation Coefficient for Emergency Shelters for the Córrego d’Antas basin (ECES-CD). The results ranked 5 shelters as ‘suitable’, 2 as ‘moderate’ and 4 as ‘not suitable. It was also noted in this study that all eleven shelters presented accessibility problems. It is possible, from the different analyzed items, to identify what measures should be taken to improve the condition of shelters.

Keywords

Emergency shelters Risk Landslide Socio-environmental disasters Vulnerability and shelter classification 

References

  1. Anders GC (2007) Abrigos temporários de caráter emergencial. 2007.119 f. Dissertação (Mestrado em Arquitetura e Urbanismo)—Universidade de São Paulo, São PauloGoogle Scholar
  2. Aminzadeh F (2007) Image is everything. Lead Edge 26(2):120–120Google Scholar
  3. Anhorn J, Khazai B (2015) Open space suitability analysis for emergency shelter after an earthquake. Nat Hazards Earth Syst Sci 15:789–803.  https://doi.org/10.5194/nhess-15-789-2015. Disponível em:http://www.nat-hazards-earth-syst-sci.net/15/789/2015/nhess-15-789-2015.html
  4. Bashawri A, Garrity S, Moodley K (2014) An Overview of the Design of Disaster Relief Shelters. Procedia Econ Finance 924–931Google Scholar
  5. Bowen KJ, Friel S (2012) Climate change adaptation: where does global health fit in the agenda? Globalization health 8(1):10Google Scholar
  6. Bonatti M, Sieber S, Schlindwein SL, Lana MA, de Vasconcelos AC, Gentile E, Malheiros TF (2016) Climate vulnerability and contrasting climate perceptions as an element for the development of community adaptation strategies: case studies in Southern Brazil. Land Use Policy 58:114–122Google Scholar
  7. Brasília (2007) Política Nacional de Defesa Civil—Ministério da Integração Nacional. Available at http://www.defesacivil.gov.br/publicacoes
  8. Carvalho NL, Coelho-Netto AL (2014) A Gestão de Áreas de Risco a Deslizamentos e Estratégias de Resposta a Desastres: um estudo sobre a percepção de risco da população local através do sistema de alerta e alarme. In: VI Congreso Iberoamericano de Estudios Teeritoriales y Ambientales, 2014, São Paulo. Anais do VI Congreso Iberoamericano de Estudios Teeritoriales y Ambientales. São PauloGoogle Scholar
  9. Centro de Estudos e Pesquisas em Desastres Naturais/Universidade Federal de Santa Caratina. Atlas Brasileiro de Desastres Naturais: 1991 a 2012/Centro Universitário de Estudose Pesquisas sobre Desastres. 2. ed. rev. ampl. Florianópolis: CEPED UFSC (2013)Google Scholar
  10. Chou J-S, Ou Y-C, Cheng M-Y, Cheng M-Y, Lee C-M (2013) Emergency shelter capacity estimation by earthquake damage analysis. Nat Hazards 65:2031–2061.  https://doi.org/10.1007/s11069-012-0461-5CrossRefGoogle Scholar
  11. Coelho Netto, AL, Sato AM, Freitas LE (2015) Land use-vegetation-landslide interactions in the mountainous region of Rio de Janeiro State: scientific basis for risk assessment and management. In: Anais regional conference of international geographical union. MoscowGoogle Scholar
  12. Coelho Netto AL, Sato AM, Avelar AS, Vianna LG, Araújo IS, Ferreira DLC, Lima PH, Silva APA, Silva RP (2011) The extreme landslide disaster in Brazil. In: Claudio Margottini; Paolo Canuti; Kyoji Sassa. (Org.). Landslide Science and Practice. 1ed. Springer, Berlin, HeidelbergGoogle Scholar
  13. Coutinho BH (2014) Indicadores Geo-Hidroecológicos de Susceptibilidade das Encostas frente à erosão e movimentos de massa em Região Montanhosa Tropical Úmida: suporte metodológico para zoneamentos de susceptibilidade e risco em diferentes escalas de análise espacial. Relatório Final de Pós-DocGoogle Scholar
  14. McConnan I (2004) Humanitarian charter and minimum standards in disaster response. Sphere Project, GenevaGoogle Scholar
  15. Duek TCN, Freitas LE, Mendonça MB (2017) Critérios e aplicabilidade de abrigos de emergência em caso de desastres por movimento de massa. Anais do XII Encontro Nacional da ANPEGEGoogle Scholar
  16. Fundação Coppetec/Laboratório de Hidrologia e Estudos de Meio Ambiente. Elaboração do Plano Estadual de Recursos Hídricos do Estado do Rio de Janeiro R3-A (2014) Temas técnicos estratégicos RT-03 - Vulnerabilidade a Eventos Críticos, Volume 2 - Ocorrências de Desastres Naturais entre 2000 e 2012 por Região Hidrográfica. Rio de Janeiro 120 pGoogle Scholar
  17. Fema (2007) Emergency temporary group housing site selection guidelines—Minimizing environmental/historic/safety problems, available at. http://www.fema.gov. Last Access May 2017
  18. Figueiró AS, Coelho Netto AL (2011) Climatic variability and pluviometric trends in a humid tropical environment at Resende municipality- middle Paraíba do Sul river valley (Rio de Janeiro- Brazil). Brazilian Geographical Journal 2:256–273Google Scholar
  19. Freitas LE, Netto ALC (2016) Reger Córrego Dantas: uma ação coletiva para enfrentamento de ameaças naturais e redução de desastres socioambientais. Ciência & Trópico, 40(1)Google Scholar
  20. Groisman PY, Knight RW, Easterling DR, Karl TR, Hegerl GC, Razuvaev VN (2005). Trends in intense precipitation in the climate record. J Clim 18:1326–1350Google Scholar
  21. Highland LM, Bobrowsky P (2008) The landslide handbook: a guide to understanding landslides. USGS Geologic Hazards. Circular 1325, p 129Google Scholar
  22. Hoegh-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Camilloni I, Guiot K (2018) Impacts of 1.5 ºC global warming on natural and human systemsGoogle Scholar
  23. Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 15:2241–2255CrossRefGoogle Scholar
  24. Magrin GO, Marengo JA, Boulanger JP, Buckeridge MS, Castellanos E, Poveda G, Scarano FR, Vicuna S (2014) Central and South America. Climate change 2014: impacts, adaptation, and vulnerability. Part B: regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the intergovernmental panel on climate change. In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilic TE, Chatterjee M, Ebi KI, Estrada YO, Genova RC, Birma B, Kissel ES, Levy AN, MacCracken S, Mastrandrea PR, White LL (eds) Cambridge University Press, Cambridge, pp 1499–1566Google Scholar
  25. Melgarejo LF, Lakes T (2014) Urban adaptation planning and climate-related disasters: An integrated assessment of public infrastructure serving as temporary shelter during river floods in Colombia. Int J Disaster risk reduction 9:147–158Google Scholar
  26. Ministério do Meio Ambiente—Grupo Executivo do Comitê Interministerial de Mudança do Clima (2015). Plano Nacional de Adaptação à Mudança do Clima, Volume I: Estratégia Geral, Versão Consulta Pública. Brasília 67 pGoogle Scholar
  27. Painel Brasileiro de Mudanças Climáticas (2012). Sumário Executivo do Volume 1 - Base Científica das Mudanças Climáticas. Contribuição do Grupo de Trabalho 1 para o 1 o Relatório de Avaliação Nacional do Painel Brasileiro de Mudanças Climáticas. Volume Especial para a Rio +20. PBMC, Rio de Janeiro, Brasil, 34p. ISBN 978-85-285-0208-4Google Scholar
  28. Quarantelli EL (1985) An assessment of conflicting views on mental health: the consequences of traumatic events. In: Figley C (ed) Trauma and its wake: the treatment of post-traumatic stress disorder. Brunner/Mazel, New YorkGoogle Scholar
  29. Quarantelli EL (1995) Patterns of sheltering and housing in US disasters. Disaster Prev Manag 4:43–53.  https://doi.org/10.1108/09653569510088069
  30. Silva RP, Lima OHM, Facadio A, Coelho Netto AL (2016) Condicionantes geomorfológicos e geológicos relacionados à deflagração de movimentos gravitacionais de massa: bacia do Córrego Dantas, Nova Friburgo/RJ. In: XI Sinageo, 2016, Maringá. Anais do XI SinageoGoogle Scholar
  31. Smyth J, Mcinerney P (2012) From silent witnesses to active agents: student voice in reengaging with learning. Peter Lang Publishing, New YorkGoogle Scholar
  32. Smith C, Parsons C (2014) Australian red cross, preferred sheltering practices for emergency sheltering in Australia. Australian Red Cross, Brisbane (Queensland)Google Scholar
  33. Sheet KPAF USAID [online]. Washington DC: USAID 2018, 28 March 2018, Accessed on 22 Apr 2018Google Scholar
  34. Sphere Project. The Sphere Project (2011) Humanitarian Charter and Minimum Standards in Humanitarian Response. Northampton: The Sphere ProjectGoogle Scholar
  35. Zahari NZ, Hashim AM (2018) Adequacy of Flood Relief Shelters: a case study in perak, Malaysia. In E3S Web of Conferences, Vol 34. p 02016 EDP SciencesGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tomás Coelho Netto Duek
    • 1
    Email author
  • Leonardo Esteves de Freitas
    • 2
  • Marcos Barreto de Mendonça
    • 3
  1. 1.Defense and Civil SecurityFluminense Federal UniversityRio de JaneiroBrazil
  2. 2.Laboratory of Geo-Hydroecology, Geography DepartmentFederal University of Rio de Janeiro (UFRJ) and Observatory of Sustainable and Healthy Territories of Fundação Oswaldo Cruz (Fiocruz)Rio de JaneiroBrazil
  3. 3.Department of Civil Construction, Polytechnic SchoolFederal University of Rio de Janeiro (UFRJ)Rio de JaneiroBrazil

Personalised recommendations