Objective Analysis of Envelope Curves for Peak Floods of European and Mediterranean Flash Floods

  • William AmponsahEmail author
  • Francesco Marra
  • Lorenzo Marchi
  • Hélène Roux
  • Isabelle Braud
  • Marco Borga
Part of the Climate Change Management book series (CCM)


Flash floods rank highly among natural disasters in terms of number of affected people and number of fatalities. This paper analyzes the scaling of the highest flash flood peaks at multiple spatial scales for different hydro-climatic regions in Europe and in the Mediterranean.The analysis is based on an integrated, high-resolution dataset of discharges concerning a number of high-intensity flash floods that occurred in these regions from 1991 to 2015. Quantile regression has permitted to define regional envelope curves of unit peak discharge versus drainage basin area, which summarize the current bound to extreme flash floods in a given region. Mean and standard error of the envelope curves’ parameters are objectively derived, permitting to explore the similarities in the slopes of the regional envelope curves. Results indicate that the exponent of the envelope curves shows almost negligible variations among climatic region whereas the multiplier depends on the climatic regions.


Flash floods Peak flows Envelope curves Quantile regression Objective estimation 



This paper contributes to the HyMeX programme ( Flash flood data were obtained from the EuroMedeFF database ( Francesco Marra was funded by the Israel Science Foundation [grant no. 1069/18], by NSF-BSF grant [BSF 2016953], and by a Google gift grant.


  1. Alexander GN (1972) Effect of catchment area on flood magnitude. J Hydrol 16:225–240CrossRefGoogle Scholar
  2. Amponsah W, Ayral PA, Boudevillain B, Bouvier C, Braud I, Brunet P, Delrieu G, Didon-Lescot JF, Gaume E, Lebouc L, Marchi L, Marra F, Morin E, Nord G, Payrastre O, Zoccatelli D, Borga M (2018) Integrated high-resolution dataset of high-intensity European and Mediterranean flash floods. Earth Syst Sci Data 10:1783–1794CrossRefGoogle Scholar
  3. Amponsah W, Marchi L, Zoccatelli D, Boni G, Cavalli M, Comiti F, Crema S, Lucía A, Marra F, Borga M (2016) Hydrometeorological characterisation of a flash flood associated with major geomorphic effects: assessment of peak discharge uncertainties and analysis of the runoff response. J Hydrometeor 17(12):3063–3077CrossRefGoogle Scholar
  4. Archer DR, Leesch F, Harwood K (2007) Learning from the extreme river Tyne flood in January 2005. Water Environ J 21(2):133–141CrossRefGoogle Scholar
  5. Barredo JI (2007) Major flood disasters in Europe: 1950–2005. Nat Hazards 42(1):125–148CrossRefGoogle Scholar
  6. Benson MA (1962) Factors influencing the occurrence of floods in a humid region of diverse terrain. U.S. Geol Surv Water Supply Pap 1580-B, p 64Google Scholar
  7. Borga M, Comiti F, Ruin I, Marra F (2019) Forensic analysis of flash flood response. Wiley interdisciplinary reviews: water 6(2). Scholar
  8. Borga M, Gaume E, Creutin JD, Marchi L (2008) Surveying flash flood response: gauging the ungauged extremes. Hydrol Processes 22:3883–3885CrossRefGoogle Scholar
  9. Borga M, Anagnostou E, Blöschl G, Creutin JD (2011) Flash flood forecasting, warning and risk management: the hydrate project. Environ Sci Policy 14:834–844CrossRefGoogle Scholar
  10. Borga M, Anagnostou EN, Blöschl G, Creutin JD (2010) Flash floods: observations and analysis of hydrometeorological controls. J Hydrol 394(1–2):1–3CrossRefGoogle Scholar
  11. Braud I, Borga M, Gourley J, Hürlimann M, Zappa M, Gallart F (2016) Flash floods, hydro-geomorphic response and risk management. J Hydrol 541:1–5CrossRefGoogle Scholar
  12. Castellarin A (2007) Probabilistic envelope curves for design flood estimation at ungauged sites. Water Resour Res 43:W04406CrossRefGoogle Scholar
  13. Delrieu G, Ducrocq V, Gaume E, Nicol J, Payrastre O, Yates E, Kirstetter PE, Andrieu H, Ayral PA, Bouvier C, Creutin JD, Livet M, Anquetin A, Lang M, Neppel L, Obled C, Parent-du-Chatelet J, Saulnier GM, Walpersdorf A, Wobrock W (2005) The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean hydro-meteorological observatory. J Hydrometeor 6:34–52CrossRefGoogle Scholar
  14. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteor Soc 95(7):1063–1082CrossRefGoogle Scholar
  15. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, New YorkCrossRefGoogle Scholar
  16. Gaume E, Borga M (2008) Post-flood field investigations in upland catchments after major flash floods: proposal of a methodology and illustrations. J Flood Risk Manag 1(4):175–189CrossRefGoogle Scholar
  17. Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaškovicová L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnová S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A collation of data on European flash floods. J Hydrol 367:70–78CrossRefGoogle Scholar
  18. Herschy RW, Fairbridge RW (1998) Encyclopedia of hydrology and water resources. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  19. Herschy RW (2002) The world’s maximum observed floods. Flow Meas Instrum 13(5–6):231–235CrossRefGoogle Scholar
  20. Koenker R, Bassett G (1978) Regression quantiles. Econometrica 46(1):33–50CrossRefGoogle Scholar
  21. Leopold LB, Wolman MG, Miller JP (1964) Fluvial processes in geomorphology. W. H. Freeman, New YorkGoogle Scholar
  22. Lumbroso D, Gaume E (2012) Reducing the uncertainty in indirect estimates of extreme flash flood discharges. J Hydrol 414–415:16–30CrossRefGoogle Scholar
  23. Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133CrossRefGoogle Scholar
  24. Overeem A, Buishand TA, Holleman I (2008) Rainfall depth–duration–frequency curves and their uncertainties. J Hydrol 348:124–134CrossRefGoogle Scholar
  25. Peleg N, Marra F, Fatichi S, Molnar P, Morin E, Sharma A, Burlando P (2018) Intensification of convective rain cells at warmer temperatures observed from high-resolution weather radar data. J Hydrometeor 19:715–726CrossRefGoogle Scholar
  26. Terti G, Ruin I, Anquetin S, Gourley JJ (2017) A situation-based analysis of flash flood fatalities in the United States. Bull Am Meteorol Soc 98:333–345CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • William Amponsah
    • 1
    Email author
  • Francesco Marra
    • 2
  • Lorenzo Marchi
    • 3
  • Hélène Roux
    • 4
  • Isabelle Braud
    • 5
  • Marco Borga
    • 6
  1. 1.Department of Agricultural and Biosystems Engineering, College of EngineeringKNUSTKumasiGhana
  2. 2.Institute of Earth SciencesHebrew University of JerusalemJerusalemIsrael
  3. 3.CNR IRPIPaduaItaly
  4. 4.Institut de Mécanique Des Fluides de ToulouseUniversité de Toulouse, INPT, UPS, IMFTToulouseFrance
  5. 5.INRAE, RiverLyVilleurbanneFrance
  6. 6.Department of Land, Environment, Agriculture and ForestryUniversity of PadovaLegnaroItaly

Personalised recommendations