# Forecasting Scanning Branches of the Hysteresis Soil Water-Retention Capacity for Calculation of Precise Irrigation Rates in Agricultural Landscapes Using a Mathematical Model

• Vitaly V. Terleev
• Wilfried Mirschel
• Alex Topaj
• Kirill Moiseev
• Issa Togo
• Yulia Volkova
• Aleksandr O. Nikonorov
• Roman Ginevsky
• Viktor Lazarev
Chapter
Part of the Innovations in Landscape Research book series (ILR)

## Abstract

A mathematical model of the hysteretic soil water-retention capacity is proposed. Based on this model, a computer program called «Hysteresis» was developed. This program has options for identifying model parameters by the method of dot-fitting of experimental data, as well as for performing predictive calculations and graphical representation of the branches of the hysteresis loop. A series of computational experiments was performed in which the possibility of identifying the parameters of the mathematical model from the data on the main (boundary) branches of soil drying and wetting was investigated, and the accuracy of the predictive calculations of the scanning branches of the hysteresis loop was estimated. Data from the literature on four soils are used. The model has been compared with three models of predecessors. A sufficiently high accuracy of forecasting the scanning branches has been achieved. The practical value of the proposed model is the possibility of calculating precise rates for crop irrigation. Application of such rates: (i) prevents the percolation of excess moisture from the root layer of the soil; (ii) minimizes the loss of irrigation water, fertilizers, ameliorants and plant protection products and (iii) reduces the risk for groundwater contamination with agrochemicals and the threat of water eutrophication.

## Keywords

Water-retention capacity of soil Hysteresis loop Identification of parameters Main (boundary) branches Forecasting the scanning branches Precise rates Irrigation

## Notes

### Acknowledgements

The research was supported by DAAD (PID: 91619700; A/10/01103) and Russian Foundation for Basic Research (#16-04-01473-a).

## References

1. Ahuja LR, Swartzendruber D (1972) An improved form of soil-water diffusivity function. Soil Sci Soc Am Proc 36:9–14
2. Brutsaert W (1966) Probability laws for pore-size distribution. Soil Sci 101:85–92
3. D’Hollander EH (1979) Estimation of the pore size distribution from the moisture characteristic. Water Resour Res 15:107–112
4. Gillham RW, Klute A, Heermann DF (1976) Hydraulic properties of a porous medium: measurement and empirical presentation. Soil Sci Soc Am J 40:203–207
5. Haverkamp R, Vauclin M, Touma J, Wierenga PJ, Vachaud G (1977) A comparison of numerical simulation model for one-dimensional infiltration. Soil Sci Soc Am J 41:285–294
6. Huang HC, Tan YC, Chen CH (2005) A novel hysteresis model in unsaturated soil. Hydrol Process 19:1653–1665
7. Kool JB, Parker JC (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour Res 23:105–114
8. Kosugi K (1994) Three-parameter lognormal distribution model for soil water retention. Water Resour Res 30:891–901
9. Kosugi K (1996) Lognormal distribution model for unsaturated soil hydraulic properties. Water Resour Res 32:2697–2703
10. Kosugi K, Hopmans JW (1998) Scaling water retention curves for soils with lognormal pore-size distribution. Soil Sci Soc Am J 62:1496–1505
11. Mirschel W, Klauss H, Berg M, Eisenhut K-U, Issbrücker G, Prochnow A, Schörling B, Wenkel K-O (2014a) Innovative Technologien für eine effiziente Bewässerung im Pflanzenbau. In: Bloch R, Bachinger J, Fohrmann R, Pfriem R (eds) Land- und Ernährungswirtschaft im Klimawandel—Auswirkungen, Anpassungsstrategien und Entscheidungshilfen. oekom verlag, München, pp 261–277Google Scholar
12. Mirschel W, Wieland R, Wenkel K-O, Nendel C, Guddat C (2014b) YIELDSTAT—a spatial yield model for agricultural crops. Eur J Agron 52:33–46
13. Mualem Y (1976) A catalogue of the hydraulic properties of unsaturated soils. Research Project 442. Technion, Israel Institute of Technology, Haifa, Israel, p 100Google Scholar
14. Scott PS, Farquhar GJ and Kouwen N (1983) Hysteretic effects on net infiltration. In: Proceeding of national conference on advances in infiltration publication 11-83 (Michigan: St. Joseph American Society of Agricultural Engineers), pp 163–170Google Scholar
15. Terleev VV, Topaj AG, Mirschel W (2015) The improved estimation for the effective supply of productive moisture considering the hysteresis of soil water-retention capacity. Russ Meteorol Hydrol 40:278–285
16. Terleev V, Petrovskaia E, Nikonorov A, Badenko V, Volkova Y, Pavlov S, Semenova N, Moiseev K, Topaj A, Mirschel W (2016a) Mathematical modeling the hydrological properties of soil for practical use in the land ecological management. In: MATEC web of conferences 73, Article number 03001Google Scholar
17. Terleev V, Nikonorov A, Togo I, Volkova Y, Garmanov V, Shishov D, Pavlova V, Semenova N, Mirschel W (2016b) Modelling the hysteretic water retention capacity of soil for reclamation research as a part of underground development. Procedia Eng 165:1776–1783
18. Terleev V, Petrovskaia E, Sokolova N, Dashkina A, Guseva I, Badenko V, Volkova Yu, Skvortsova O, Nikonova O, Pavlov S, Nikonorov A, Garmanov V, Mirschel W (2016c) Mathematical modeling of hydrophysical properties of soils in engineering and reclamation surveys. In: MATEC web of conferences 53, Article no 01013Google Scholar
19. Terleev VV, Nikonorov AO, Togo I, Volkova YuV, Ginevsky RS, Lazarev VA, Khamzin ER, Gar-ma-nov VV, Mirschel W, Akimov LI (2017a) Hysteretic water-retention capacity of sandy soil. Mag Civ Eng 2:84–92Google Scholar
20. Terleev V, Ginevsky R, Lazarev V, Nikonorov A, Togo I, Topaj A, Moiseev K, Abakumov E, Melnichuk A, Dunaieva I (2017b) Predicting the scanning branches of hysteretic soil water-retention capacity with use of the method of mathematical modeling. In: IOP conference series: earth and environmental science 90, Article no 012105Google Scholar
21. Terleev VV, Nikonorov AO, Ginevsky RS, Lazarev VA, Togo I, Topaj AG, Moiseev KG, Pavlova VA, Layshev KA, Arkhipov MV, Yu Melnichuk A, Dunaieva IA, Mirschel W (2018a) Hysteresis of the soil water-retention capacity: estimating the scanning branches. Mag Civ Eng 1:141–148Google Scholar
22. Terleev V, Mirschel W, Nikonorov A, Ginevsky R, Lazarev V, Topaj A, Moiseev K, Layshev K, Arkhipov M, Melnichuk A, Dunaieva I, Popovych V (2018b) Five models of hysteretic water-retention capacity and their comparison for sandy soil. In: MATEC web of conferences 193, Article no 02036Google Scholar
23. Van Genuchten M Th (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–989Google Scholar
24. Wenkel K-O, Mirschel W (1991) BERSIM und BEREST 90 Modelle zur Simulation der Bodenfeuchte und Evapotranspiration sowie zur operativen Beregnungseinsatzsteuerung im integrierten Landbau. Agrarinformatik 21:349–360Google Scholar
25. Winitzki S (2008) A handy approximation for the error function and its inverse (in https://sites.goo-gle.com/si-te/winitzki/sergei-winitzkis-files/erf-approx.pdf?attredirects=0)

© Springer Nature Switzerland AG 2020

## Authors and Affiliations

• Vitaly V. Terleev
• 1
Email author
• Wilfried Mirschel
• 2
• Alex Topaj
• 3
• Kirill Moiseev
• 3
• Issa Togo
• 1
• Yulia Volkova
• 1
• Aleksandr O. Nikonorov
• 1
• Roman Ginevsky
• 1
• Viktor Lazarev
• 1
1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
2. 2.Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V.MünchebergGermany
3. 3.Agrophysical Research InstituteSt. PetersburgRussia