Advertisement

Pathways for Nanoparticle (NP)-Induced Oxidative Stress

  • Loutfy H. MadkourEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

The rapidly emerging field of nanotechnology has offered innovative discoveries in the medical, industrial, and consumer sectors. The unique physicochemical and electrical properties of engineered nanoparticles (NP) make them highly desirable in a variety of applications. However, these novel properties of NP are fraught with concerns for environmental and occupational exposure. Changes in structural and physicochemical properties of NP can lead to changes in biological activities including ROS generation, one of the most frequently reported NP-associated toxicities. Oxidative stress induced by engineered NP is due to acellular factors such as particle surface, size, composition, and presence of metals, while cellular responses such as mitochondrial respiration, NP–cell interaction, and immune cell activation are responsible for ROS-mediated damage. NP-induced oxidative stress responses are torchbearers for further pathophysiological effects including genotoxicity, inflammation, and fibrosis as demonstrated by activation of associated cell-signaling pathways. Since oxidative stress is a key determinant of NP-induced injury, it is necessary to characterize the ROS response resulting from NP. Through physicochemical characterization and understanding of the multiple signaling cascades activated by NP-induced ROS, a systemic toxicity screen with oxidative stress as a predictive model for NP-induced injury can be developed.

Keywords

Nanotechnology Oxidative stress Nanoparticles (NP) ROS generation Genotoxicity 

References

  1. Air Resources Board (2008) Planned Air pollution Research. California Environmental Protection AgencyGoogle Scholar
  2. Allen JI, Moore MN (2004) Environmental prognostics: is the current use of biomarkers appropriate for environmental risk evaluation? Mar Environ Res 58:227–232CrossRefGoogle Scholar
  3. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radical Biol Med 28(3):463–499CrossRefGoogle Scholar
  4. Antonini JM (2003) Health effects of welding. Crit Rev Toxicol 33(1):61–103CrossRefGoogle Scholar
  5. Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and metaanalysis. Environ Health Perspect 112:970–978CrossRefGoogle Scholar
  6. AshaRani PV, Low KahMun G, HandeMP Valiyaveettil S (2008) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290CrossRefGoogle Scholar
  7. Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharmacol 120(2):168–178CrossRefGoogle Scholar
  8. Azad N, Iyer AK, Wang L, Liu Y, Lu Y, Rojanasakul Y (2012) Reactive oxygen species-mediated p38 MAPK regulates carbon nanotube-induced fibrogenic and angiogenic responses. Nanotoxicology 7(2):157–168CrossRefGoogle Scholar
  9. Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1–11.  https://doi.org/10.7508/ibj.2016.01.001CrossRefGoogle Scholar
  10. Bai Y, Zhang Y, Zhang J, Mu Q, Zhang W, Butch ER et al (2010) Repeated administrations of carbon nanotubes in male mice cause reversible testis damage without affecting fertility. Nat Nanotechnol 5:683–689.  https://doi.org/10.1038/nnano.2010.153CrossRefGoogle Scholar
  11. Balamurugan K, Rajaram R, Ramasami T, Narayanan S (2002) Chromium (III)-induced apoptosis of lymphocytes: death decision by ROS and Src-family tyrosine kinases. Free Radic Biol Med 33(12):1622–1640CrossRefGoogle Scholar
  12. Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS, Mikkelsen RB (2005) Inhibition of protein tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem 280(15):14453–14461CrossRefGoogle Scholar
  13. Berg I, Schluter T, Gercken G (1993) Increase of bovine alveolar macrophage superoxide anion and hydrogen peroxide release by dusts of different origin. J Toxicol Environ Health 39(3):341–354CrossRefGoogle Scholar
  14. Berneburg M, Kamenisch Y, Krutmann J, Röcken M (2006) ‘To repair or not to repair—no longer a question’: repair of mitochondrial DNA shielding against age and cancer. Exp Dermatol 15:1005–1015CrossRefGoogle Scholar
  15. Berry CC, Wells S, Charles S, Aitchison G, Curtis ASG (2004) Cell response to dextran-derivatised iron oxide nanoparticles post internalization. Biomaterials 25:5405–5413CrossRefGoogle Scholar
  16. Bhatt I, Tripathi BN (2011) Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere 82:308–317CrossRefGoogle Scholar
  17. Blanc PD, Boushey HA, Wong H, Wintermeyer SF, Bernstein MS (1993) Cytokines in metal fume fever. Am Rev Respir Dis 147(1):134–138CrossRefGoogle Scholar
  18. Bonner JC (2002) Theepidermal growth factor receptor at the crossroads of airway remodeling. Am J Physiol 283(3):L528–L530Google Scholar
  19. Bonner JC (2007) Lung fibrotic responses to particle exposure. Toxicol Pathol 35(1):148–153CrossRefGoogle Scholar
  20. Boonstra J, Post JA (2004) Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Gene 337:1–13CrossRefGoogle Scholar
  21. Borm PJA, Robbins D, Haubold S et al (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11CrossRefGoogle Scholar
  22. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54:631–651CrossRefGoogle Scholar
  23. British Standard Institute (BSI) (2007) Nanotechnologies—part 2: guide to safe handling and disposal of manufactured nanomaterials. Tech. Rep. PD, 6699–2, British Standard Institute (BSI), London, UKGoogle Scholar
  24. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199CrossRefGoogle Scholar
  25. Brunk UT, Terman A (2002) Lipofuscin: mechanisms of age-related accumulation and influence on cell function. Free Radic Biol Med 33:611–619CrossRefGoogle Scholar
  26. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71CrossRefGoogle Scholar
  27. Byrne JD, Baugh JA (2008) The significance of nanoparticles in particle-induced pulmonary fibrosis. McGill J Med 11(1):43–50Google Scholar
  28. Carter JM, Driscoll KE (2001) The role of inflammation, oxidative stress, and proliferation in silica-induced lung disease: a species comparison. J Environ Pathol Toxicol Oncol 20(supplement 1):33–43Google Scholar
  29. Castranova V, Huffman LJ, Judy DJ et al (1998) Enhancement of nitric oxide production by pulmonary cells following silica exposure. Environ Health Perspect 106(supplement 5):1165–1169Google Scholar
  30. Casuccio G, Ogle R, Bunker K, Rickabaugh K et al (2010) Worker and environmental assessment of potential unbound engineered nanoparticle releases, phase III final report: validation of preliminary control band assignments. Ernest Orlando Lawrence Berkeley National Laboratory and RJ Lee Group, Inc. CanadaGoogle Scholar
  31. Cheng XK, Kan AT, Tomsom MB (2004) Naphthalene adsorption and desorption from aqueous C-60 fullerene. J Chem Eng Data 49:675–683CrossRefGoogle Scholar
  32. Chithrani BD, Chan WC (2007) Elucidating the mechanism of cellular uptake and removal of protein coated gold nanoparticles of different sizes and shapes. Nano Lett 7:1542–1550CrossRefGoogle Scholar
  33. Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6:662–668CrossRefGoogle Scholar
  34. Clichici S, Biris AR, Tabaran F, Filip A (2012) Transient oxidative stress and inflammation after intraperitoneal administration of multiwalled carbon nanotubes functionalized with single strand DNA in rats. Toxicol Appl Pharmacol 259(3):281–292CrossRefGoogle Scholar
  35. Coccini T, Barni S, Vaccarone R, Mustarelli P, Manzo L, Roda E (2013) Pulmonary toxicity of instilled cadmium-doped silica nanoparticles during acute and subacute stages in rats. Histol Histopathol 28(2):195–209Google Scholar
  36. Colvin VL (2004) Sustainability for nanotechnology. The Scientist 18(16):26–27Google Scholar
  37. Cui Z, Lockman PR, Atwood CS, Hsu C-H, Gupte A, Allen DD et al (2005) Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur J Pharm Biopharm 59:263–272CrossRefGoogle Scholar
  38. De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE (2008) Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29:1912–1919.  https://doi.org/10.1016/j.biomaterials.2007.12.037CrossRefGoogle Scholar
  39. Deshpande A, Narayanan PK, Lehnert BE (2002) Silicainduced generation of extracellular factor(s) increases reactive oxygen species in human bronchial epithelial cells. Toxicol Sci 67(2):275–283CrossRefGoogle Scholar
  40. Ding M, Shi X, Lu Y et al (2001) Induction of activator protein-1 through reactive oxygen species by crystalline silica in JB6 cells. J Biol Chem 276(12):9108–9114CrossRefGoogle Scholar
  41. Donaldson K, Poland CA (2012) Inhaled nanoparticles and lung cancer—what we can learn from conventional particle toxicology. Swiss Med Weekly 142. Article ID w13547Google Scholar
  42. Donaldson K, Tran CL (2002) Inflammation caused by particles and fibers. Inhalation Toxicol 14(1):5–27CrossRefGoogle Scholar
  43. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–216CrossRefGoogle Scholar
  44. Donaldson K, Stone V, Tran CL, Kreyling W, Borm PJA (2004) Nanotoxicology. Occup Environ Med 61(9):727–728CrossRefGoogle Scholar
  45. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5CrossRefGoogle Scholar
  46. Driscoll KE, Howard BW, Carter JM, Janssen YMW, Mossman BT, Isfort RJ (2001) Mitochondrial-derived oxidants and quartz activation of chemokine gene expression. Adv Exp Med Biol 500:489–496CrossRefGoogle Scholar
  47. Eblin KE, Bowen ME, Cromey DW et al (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217(1):7–14CrossRefGoogle Scholar
  48. Eom H, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44(21):8337–8342CrossRefGoogle Scholar
  49. Esposito F, Chirico G, Gesualdi NM et al (2003) Protein kinase B activation by reactive oxygen species is independent of tyrosine kinase receptor phosphorylation and requires SRC activity. J Biol Chem 278(23):20828–20834CrossRefGoogle Scholar
  50. Fadeel B, Kagan VE (2003) Apoptosis and macrophage clearance of neutrophils: regulation by reactive oxygen species. Redox Rep 8(3):143–150CrossRefGoogle Scholar
  51. Fang J, Lyon DY, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642CrossRefGoogle Scholar
  52. Fenoglio I, Corazzari I, Francia C, Bodoardo S, Fubini B (2008) The oxidation of glutathione by cobalt/tungsten carbide contributes to hard metal-induced oxidative stress. Free Radical Res 42(8):737–745CrossRefGoogle Scholar
  53. Fubini B, Hubbard A (2003) Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic Biol Med 34(12):1507–1516CrossRefGoogle Scholar
  54. Gatti AM, Rivasi F (2002) Biocompatibility of micro- and nanoparticles part I in liver and kidney. Biomaterials 23:2381–2387CrossRefGoogle Scholar
  55. Genestra M (2007) Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell Signal 19(9):1807–1819CrossRefGoogle Scholar
  56. Gilliland FD, Li Y-F, Saxon A, Diaz-Sanchez D (2004) Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. The Lancet 363:119–125CrossRefGoogle Scholar
  57. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRefGoogle Scholar
  58. Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ et al (2008) The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci USA 105:11613–11618CrossRefGoogle Scholar
  59. Guo Y, Zhang J, Zheng Y, Yang J, Zhu X (2011) Cytotoxic and genotoxic effects of multi-wall carbon nanotubes on human umbilical vein endothelial cells in vitro. Mutat Res 721(2):184–191CrossRefGoogle Scholar
  60. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2: role in cell survival following oxidant injury. J Biol Chem 271(8):4138–4142CrossRefGoogle Scholar
  61. Habib GM, Shi Z, Lieberman MW (2007) Glutathione protects cells against arsenite-induced toxicity. Free Radic Biol Med 42(2):191–201CrossRefGoogle Scholar
  62. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17(5):315–325CrossRefGoogle Scholar
  63. He X, Young S, Schwegler-Berry D, Chisholm WP, Fernback JE, Ma Q (2011) Multiwalled carbon nanotubes induce a fibrogenic response by stimulating reactive oxygen species production, activating NF-κB signaling, and promoting fibroblastto-myofibroblast transformation. Chem Res Toxicol 24(12):2237–2248CrossRefGoogle Scholar
  64. He X, Young S, Fernback JE, Ma Q (2012) Single-walled carbon nanotubes induce fibrogenic effect by disturbing mitochondrial oxidative stress and activating NF-κB signaling. J Clin Toxicol supplement S5. Article 005Google Scholar
  65. Hoet PHM, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12.  https://doi.org/10.1186/1477-3155-2-12CrossRefGoogle Scholar
  66. Hondroulis E, Nelson J, Chen-Zhong L (2014) Biomarker analysis for nanotoxicology. In: Grupta D (ed) Biomarkers in toxicology. Elsevier, pp 689–695Google Scholar
  67. Howard CV (2004) Small particles—big problems. Int Lab News 34(2):28–29Google Scholar
  68. Howden PJ, Faux SP (1996) Fibre-induced lipid peroxidation leads to DNA adduct formation in Salmonella typhimurium TA104 and rat lung fibroblasts. Carcinogenesis 17(3):413–419CrossRefGoogle Scholar
  69. Hsin Y, Chen C, Huang S, Shih T, Lai P, Chueh PJ (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179(3):130–139CrossRefGoogle Scholar
  70. Huang Y, Wu C, Aronstam R (2010a) Toxicity of transition metal oxide nanoparticles: recent insights from in vitro studies. Materials 3(10):4842–4859CrossRefGoogle Scholar
  71. Huang C, Aronstam RS, Chen D, Huang Y (2010b) Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro 24(1):45–55CrossRefGoogle Scholar
  72. Hubbard AK, Timblin CR, Shukla A, Rincón M, Mossman BT (2002) Activation of NF κB-dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol 282(5):L968–L975Google Scholar
  73. Hunter PJ, Robbins P, Noble D (2002) The IUPS human physiome project. Pflugers Arch Eur J Physiol 445:1–9CrossRefGoogle Scholar
  74. Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J et al (2010) Microglial response to gold nanoparticles. ACS Nano 4:2595–2606CrossRefGoogle Scholar
  75. Ingram JL, Rice AB, Santos J, VanHouten B, Bonner JC (2003) Vanadium-induced HB-EGF expression in human lung fibroblasts is oxidant dependent and requires MAP kinases. Am J Physiol 284(5):L774–L782Google Scholar
  76. Inoue K, Takano H, Yanagisawa R et al (2006) Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect 114(9):1325–1330CrossRefGoogle Scholar
  77. Jaurand MC (1997) Mechanisms of fiber-induced genotoxicity. Environ Health Perspect 105(supplement 5):1073–1084Google Scholar
  78. Jaurand MF, Renier A, Daubriac J (2009) Mesothelioma: do asbestos and carbon nanotubes pose the same health risk? Part Fibre Toxicol 6:16CrossRefGoogle Scholar
  79. Jeng HA, Swanson J (2006) Toxicity of metal oxide nanoparticles in mammalian cells. J Environ Sci Health A 41(12):2699–2711CrossRefGoogle Scholar
  80. Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V (2010) A review of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and biological mechanisms responsible for the observed toxicity. Crit Rev Toxicol 40(4):328–346CrossRefGoogle Scholar
  81. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414CrossRefGoogle Scholar
  82. Kawanishi S, Hiraku Y, Murata M, Oikawa S (2002) The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32(9):822–832CrossRefGoogle Scholar
  83. Kennedy IM, Wilson D, Barakat AI (2009) Uptake and inflammatory effects of nanoparticles in a human vascular endothelial cell line. Res Rep 136:3–32Google Scholar
  84. Khanna P, Ong C, Bay BH, Baeg GH (2015) Nanotoxicity: an interplay of oxidative stress, inflammation and cell death. Nanomaterials 5:1163–1180.  https://doi.org/10.3390/nano5031163CrossRefGoogle Scholar
  85. Kim S, Lim YT, Soltesz EG, De Grand AM, Lee J, Nakayama A et al (2004) Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol 22(93):97.  https://doi.org/10.1038/nbt920CrossRefGoogle Scholar
  86. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW et al (2006a) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347.  https://doi.org/10.1093/toxsci/kfj027CrossRefGoogle Scholar
  87. Kim Y, Reed W, Wu W, Bromberg PA, Graves LM, Samet JM (2006b) Zn2+-induced IL 8 expression involves AP-1, JNK, and ERK activities in human airway epithelial cells. Am J Physiol 290(5):L1028–L1035Google Scholar
  88. Kim I, Baek M, Choi S (2010) Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol 10(5):3453–3458CrossRefGoogle Scholar
  89. Kisin ER, Murray AR, Keane MJ et al (2007) Single-walled carbon nanotubes: geno- and cytotoxic effects in lung fibroblast V79 cells. J Toxicol Environ Health A 70(24):2071–2079CrossRefGoogle Scholar
  90. Kisin ER, Murray AR, Sargent L et al (2011) Genotoxicity of carbon nanofibers: are they potentially more or less dangerous than carbon nanotubes or asbestos? Toxicol Appl Pharmacol 252(1):1–10CrossRefGoogle Scholar
  91. Kisseleva T, Brenner DA (2008) Mechanisms of fibrogenesis. Exp Biol Med 233(2):109–122CrossRefGoogle Scholar
  92. Knaapen AM, Borm PJA, Albrecht C, Schins RPF (2004) Inhaled particles and lung cancer, part A: mechanisms. Int J Cancer 109(6):799–809CrossRefGoogle Scholar
  93. Koziara JM, Lockman PR, Allen DD, Mumper RJ (2003) In situ bloodebrain barrier transport of nanoparticles. Pharm Res 20:1772–1778CrossRefGoogle Scholar
  94. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51(10):1872–1881CrossRefGoogle Scholar
  95. Lam C, James TM, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134CrossRefGoogle Scholar
  96. Lee H, Shin D, Song H et al (2009) Nanoparticles up-regulate tumor necrosis factor-α and CXCL8 via reactive oxygen species and mitogen-activated protein kinase activation. Toxicol Appl Pharmacol 238(2):160–169CrossRefGoogle Scholar
  97. LeGoff A, Holzinger M, Cosnier S (2011) Enzymatic biosensors based on SWCNT-conducting polymer electrodes. Analyst 136(7):1279–1287CrossRefGoogle Scholar
  98. Lenaz G (2001) The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52(3–5):159–164CrossRefGoogle Scholar
  99. Li N, Xia T, Nel AE (2008) The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med 44(9):1689–1699CrossRefGoogle Scholar
  100. Li JJ, Muralikrishnan S, Ng CT, Yung LY, Bay BH (2010) Nanoparticle-induced pulmonary toxicity. Exp Biol Med 235(9):1025–1033CrossRefGoogle Scholar
  101. Liu Z, Davis C, Cai W, He L, Chen X, Dai H (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci 105:1410–1415.  https://doi.org/10.1073/pnas.0707654105CrossRefGoogle Scholar
  102. Liu Y, Li X, Bao S et al (2013) Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology 24:175501CrossRefGoogle Scholar
  103. Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666CrossRefGoogle Scholar
  104. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun HZ, Tam PKH, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silvernanoparticles. Proteome Res 5:916–924CrossRefGoogle Scholar
  105. Lovern SB, Klaper R (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem 25:1132–1137CrossRefGoogle Scholar
  106. Ma X, Wu Y, Jin S, Tian Y, Zhang X, Zhao Y et al (2011) Gold nanoparticles induce autophagosome accumulation through size-dependent nanoparticle uptake and lysosome impairment. ACS Nano 5:8629–8639.  https://doi.org/10.1021/nn202155yCrossRefGoogle Scholar
  107. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle induced oxidative stress and toxicity. Biomed Res Int 2013:942916.  https://doi.org/10.1155/2013/942916CrossRefGoogle Scholar
  108. Manna SK, Sarkar S, Barr J et al (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5(9):1676–1684CrossRefGoogle Scholar
  109. Manna P, Ghosh M, Ghosh J, Das J, Sil PC (2012) Contribution of nano-copper particles to in vivo liver dysfunction and cellular damage: role of IκB/NF-κB, MAPKs and mitochondrial signal. Nanotoxicology 6(1):1–21CrossRefGoogle Scholar
  110. Maurer-Jones MA, Lin Y, Haynes CL (2010) Functional assessment of metal oxide nanoparticle toxicity in immune cells. ACS Nano 4(6):3363–3373CrossRefGoogle Scholar
  111. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67(1):87–107CrossRefGoogle Scholar
  112. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129CrossRefGoogle Scholar
  113. McShan D, Ray PC, Yu H (2014) Molecular toxicity mechanism of nanosilver. J Food Drug Anal 22:116–127.  https://doi.org/10.1016/j.jfda.2014.01.010CrossRefGoogle Scholar
  114. Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD (2007) Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 100(1):203–214CrossRefGoogle Scholar
  115. Moon C, Park H, Choi Y, Park E, Castranova V, Kang JL (2010) Pulmonary inflammation after intraperitoneal administration of ultrafine titanium dioxide (TiO2) at rest or in lungs primed with lipopolysaccharide. J Toxicol Environ Health A 73(5–6):396–409CrossRefGoogle Scholar
  116. Moore MN, Allen JI (2002) A computational model of the digestive gland epithelial cell of the marine mussel and its simulated responses to aromatic hydrocarbons. Mar Environ Res 54:579–584CrossRefGoogle Scholar
  117. Moore MN, Noble D (2004) Editorial: computational modelling of cell and tissue processes and function. J Mol Histol 35:655–658Google Scholar
  118. Morawska L, Wang H, Ristovski Z, Jayaratne ER, Johnson G, Cheung HC, Ling X, He C (2009) Environmental Monitoring of Nanoparticles (review). Queensland University of Technology, AustraliaGoogle Scholar
  119. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnol 16:2346–2353CrossRefGoogle Scholar
  120. Muller J, Decordier I, Hoet PH et al (2008) Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 29(2):427–433CrossRefGoogle Scholar
  121. Murray AR, Kisin ER, Tkach AV et al (2012) Factoring-in agglomeration of carbon nanotubes and nanofibers for better prediction of their toxicity versus asbestos. Part Fibre Toxicol 9:10CrossRefGoogle Scholar
  122. Na K, Lee TB, Park K-H, Shin E-K, Lee Y-B, Choi H-K (2003) Self-assembled nanoparticles of hydrophobically modified polysaccharide bearing vitamin H as a targeted anti-cancer drug delivery system. Eur J Pharm Sci 18:165–173CrossRefGoogle Scholar
  123. Napierska D, Rabolli V, Thomassen LCJ et al (2012) Oxidative stress induced by pure and iron-doped amorphous silica nanoparticles in subtoxic conditions. Chem Res Toxicol 25(4):828–837CrossRefGoogle Scholar
  124. Naqvi S, Samim M, Abdin MZ et al (2010) Concentrationdependent toxicity of iron oxide nanoparticles mediated by increased oxidative stress. Int J Nanomed 5(1):983–989CrossRefGoogle Scholar
  125. Nel A (2005) Air pollution-related illness: effects of particles. Science 308(5723):804–806CrossRefGoogle Scholar
  126. Nel A, Xia T, Mädler L, Li N (2006a) Toxic potential of materials at the nano level. Science 311(5761):622–627CrossRefGoogle Scholar
  127. Nel AE, Mädler L, Velegol D, Xia T, Hoek EM, Somasundaran P et al (2009) Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater 8:543–557.  https://doi.org/10.1038/nmat2442CrossRefGoogle Scholar
  128. Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22CrossRefGoogle Scholar
  129. Oberdörster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445CrossRefGoogle Scholar
  130. Oberdörster G, Oberdörster E, Oberdörster J (2005a) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839.  https://doi.org/10.1289/ehp.7339CrossRefGoogle Scholar
  131. Oberdörster G, Maynard A, Donaldson K et al (2005b) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8CrossRefGoogle Scholar
  132. Pacurari M, Yin XJ, Zhao J et al (2008) Raw single-wall carbon nanotubes induce oxidative stress and activate MAPKs, AP-1, NF-κB, and Akt in normal and malignant human mesothelial cells. Environ Health Perspect 116(9):1211–1217CrossRefGoogle Scholar
  133. Pacurari M, Qian Y, Porter DW et al (2011) Multi-walled carbon nanotube-induced gene expression in the mouse lung: association with lung pathology. Toxicol Appl Pharmacol 255(1):18–31CrossRefGoogle Scholar
  134. Park E, Choi J, Park Y, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245(1–2):90–100CrossRefGoogle Scholar
  135. Park E, Yoon J, Choi K, Yi J, Park K (2009) Induction of chronic inflammation in mice treated with titanium dioxide nanoparticles by intratracheal instillation. Toxicology 260(1–3):37–46CrossRefGoogle Scholar
  136. Patlolla AK, Hussain SM, Schlager JJ, Patlolla S, Tchounwou PB (2010a) Comparative study of the clastogenicity of functionalized and nonfunctionalized multiwalled carbon nanotubes in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25(6):608–621CrossRefGoogle Scholar
  137. Patlolla A, Knighten B, Tchounwou P (2010b) Multi-walled carbon nanotubes induce cytotoxicity, genotoxicity and apoptosis in normal human dermal fibroblast cells. Ethn Dis 20(supplement 1):65–72Google Scholar
  138. Perkel JM (2004) Nanoscience is out of the bottle. The Scientist 17(15):20–23Google Scholar
  139. Pilger A, Rüdiger HW (2006) 8-Hydroxy-2`-deoxyguanosine as a marker of oxidative DNA damage related to occupational and environmental exposures. Int Arch Occup Environ Health 80(1):1–15CrossRefGoogle Scholar
  140. Pojlak-Blazi M, Jaganjac M, Zarkovic N (2010) Cell oxidative stress: risk of metal nanoparticles. Handbook of nanophysics: nanomedicine and nanorobotics. CRC Press, NewYork, NY, USA, pp 1–17Google Scholar
  141. Poljak-Blazi M, Jaganjac M, Mustapic M, Pivac N, Muck-Seler D (2009) Acute immunomodulatory effects of iron poly isomaltosate in rats. Immunobiology 214(2):121–128CrossRefGoogle Scholar
  142. Pryor WA, Stone K, Cross CE, Machlin L, Packer L (1993) Oxidants in cigarette smoke: radicals, hydrogen peroxide, peroxynitrate, and peroxynitrite. Ann N Y Acad Sci 686:12–28CrossRefGoogle Scholar
  143. Pujalté I, Passagne I, Brouillaud B et al (2011) Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part Fibre Toxicol 8:10CrossRefGoogle Scholar
  144. Pulskamp K, Diabaté S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Let 168(1):58–74CrossRefGoogle Scholar
  145. Qiu Y, Liu Y, Wang LM, Xu LG, Bai R et al (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials 31:7606–7619CrossRefGoogle Scholar
  146. Raghunathan VK, Devey M, Hawkins S et al (2013) Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity. Biomaterials 34(14):3559–3570CrossRefGoogle Scholar
  147. Rahman K (2007) Studies on free radicals, antioxidants, and cofactors. Clin Interv Aging 2(2):219–236Google Scholar
  148. Rahman I, Biswas SK, Jimenez LA, Torres M, Forman HJ (2005) Glutathione, stress responses, and redox signaling in lung inflammation. Antioxid Redox Signal 7(1–2):42–59CrossRefGoogle Scholar
  149. Ravichandran P, Baluchamy S, Sadanandan B et al (2010) Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis 15(12):1507–1516CrossRefGoogle Scholar
  150. Reddy AR, Krishna DR, Reddy YN, Himabindu V (2010) Translocation and extra pulmonary toxicities of multi wall carbon nanotubes in rats. Toxicol Mech Methods 20(5):267–272CrossRefGoogle Scholar
  151. Reddy ARN, Rao MV, Krishna DR, Himabindu V, Reddy YN (2011) Evaluation of oxidative stress and anti-oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59(2):251–257CrossRefGoogle Scholar
  152. Reijnders L (2006) Cleaner nanotechnology and hazard reduction of manufactured nanoparticles. Clean Prod 14:124–133CrossRefGoogle Scholar
  153. Risom L, Møller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592(1–2):119–137CrossRefGoogle Scholar
  154. Roberts AP, Mount AS, Seda B, Souther J, Qiao R, Lin S, Ke PC, Rao AM, Klaine SJ (2007) In vivo biomodification of lipid-coated carbon nanotubes by Daphnia magna. Environ Sci Technol 41:3025–3029CrossRefGoogle Scholar
  155. Royal Society and Royal Academy of Engineering (2004) Nanoscience and nanotechnologies: opportunities and uncertainties. RS policy document 19/04. The Royal Society, London, p. 113Google Scholar
  156. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nanoletters 4:1881–1887CrossRefGoogle Scholar
  157. Schins RPF (2002) Mechanisms of genotoxicity of particles and fibers. Inhalation Toxicol 14(1):57–78CrossRefGoogle Scholar
  158. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NWS, Chu P et al (2008) A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol 3:216–221CrossRefGoogle Scholar
  159. Shi H, Hudson LG, Liu KJ (2004) Oxidative stress and apoptosis in metal ion-induced carcinogenesis. Free Radic Biol Med 37(5):582–593CrossRefGoogle Scholar
  160. Shi Y, Wang F, He J, Yadav S, Wang H (2010) Titaniumdioxide nanoparticles cause apoptosis in BEAS-2B cells through the caspase 8/t-Bid-independent mitochondrial pathway. Toxicol Lett 196(1):21–27CrossRefGoogle Scholar
  161. Shin J-S, Abraham SN (2001) Caveolae—not just craters in the cellular landscape. Science 293:1447–1448CrossRefGoogle Scholar
  162. Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2011) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25(1):231–241CrossRefGoogle Scholar
  163. Shvedova AA, Kisin ER, Mercer R et al (2005) Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol 289(5):L698–L708Google Scholar
  164. Shvedova AA, Kisin E, Murray AR et al (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol 295(4):L552–L565Google Scholar
  165. Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE (2012a) Mechanisms of carbon nanotube-induced toxicity: focus on oxidative stress. Toxicol Appl Pharmacol 261(2):121–133CrossRefGoogle Scholar
  166. Shvedova AA, Kapralov AA, Feng WH et al (2012b) Impaired clearance and enhanced pulmonary inflammatory/fibrotic response to carbon nanotubes in myeloperoxidase-deficient mice. PLoS One 7(3):e30923CrossRefGoogle Scholar
  167. Sies H (1991) Oxidative stress: introduction. In: Sies H (ed) Oxidative stress oxidants and antioxidants. Academic Press, London, UK, pp 15–22Google Scholar
  168. Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric Ultrafine Particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113(8):947–955CrossRefGoogle Scholar
  169. Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M et al (2008) Meeting report: atmospheric pollution and human reproduction. Environ Health Perspect 116:791.  https://doi.org/10.1289/ehp.11074CrossRefGoogle Scholar
  170. Smith KR, Klei LR, Barchowsky A (2001) Arsenite stimulates plasma membrane NADPH oxidase in vascular endothelial cells. Am J Physiol 280(3):L442–L449Google Scholar
  171. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L (2010) Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22CrossRefGoogle Scholar
  172. Son Y, Cheong Y, Kim N, Chung H, Kang DG, Pae H (2011) Mitogen-activated protein kinases and reactive oxygen species: how can ROS activate MAPK pathways? J Signal Transduct 2011:6. Article ID 792639CrossRefGoogle Scholar
  173. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  174. Song M, Li Y, Kasai H, Kawai K (2012) Metal nanoparticle induced micronuclei and oxidative DNA damage in mice. J Clin Biochem Nutr 50(3):211–216CrossRefGoogle Scholar
  175. Stambe C, Atkins RC, Tesch GH, Masaki T, Schreiner GF, Nikolic-Paterson DJ (2004) The role of p38alpha mitogen activated protein kinase activation in renal fibrosis. J Am Soc Nephrol 15(2):370–379CrossRefGoogle Scholar
  176. Stella GM (2011) Carbon nanotubes and pleural damage: perspectives of nanosafety in the light of asbestos experience. Biointerphases 6(2):P1–P17CrossRefGoogle Scholar
  177. Stone V, Shaw J, Brown DM, Macnee W, Faux SP, Donaldson K (1998) The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol In Vitro 12(6):649–659CrossRefGoogle Scholar
  178. Stone V, Johnston H, Clift MJD (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Trans Nanobiosci 6(4):331–340CrossRefGoogle Scholar
  179. Tal TL, Graves LM, Silbajoris R, Bromberg PA, Wu W, Samet JM (2006) Inhibition of protein tyrosine phosphatase activity mediates epidermal growth factor receptor signaling in human airway epithelial cells exposed to Zn2+. Toxicol Appl Pharmacol 214(1):16–23CrossRefGoogle Scholar
  180. Taylor MD, Roberts JR, Leonard SS, Shi X, Antonini JM (2003) Effects of welding fumes of differing composition and solubility on free radical production and acute lung injury and inflammation in rats. Toxicol Sci 75(1):181–191CrossRefGoogle Scholar
  181. Templeton RC, Ferguson PL, Washburn KM, Scrivens WA, Chandler GT (2006) Life-cycle effects of single-walled carbon nanotubes (SWNTs) on an estuarine meiobenthic copepod. Environ Sci Technol 40:7387–7393CrossRefGoogle Scholar
  182. Terman A, Brunk UT (2004) Molecules in focus: lipofuscin. Int J Biochem Cell Biol 36:1400–1404CrossRefGoogle Scholar
  183. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol 279(6):L1005–L1028Google Scholar
  184. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156CrossRefGoogle Scholar
  185. Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B (1997) Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2- terminal kinase). Eur J Biochem 244(2):587–595CrossRefGoogle Scholar
  186. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(2):335–344CrossRefGoogle Scholar
  187. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284(2):717–721CrossRefGoogle Scholar
  188. Valavanidis A, Vlachogianni T, Fiotakis C (2009) 8-hydroxy- 2`-deoxyguanosine (8-OHdG): a critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C 27(2):120–139CrossRefGoogle Scholar
  189. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress induced cancer. Chem Biol Interact 160(1):1–40CrossRefGoogle Scholar
  190. Vallyathan V, Shi X (1997) The role of oxygen free radicals in occupational and environmental lung diseases. Environ Health Perspect 105(supplement 1):165–177Google Scholar
  191. van Berlo D, Clift MJ, Albrecht C, Schins RP (2012) Carbon nanotubes: an insight into the mechanisms of their potential genotoxicity. Swiss Med Weekly 142:w13698Google Scholar
  192. Van der Goot FG, Gruenberg J (2002) Oiling the wheels of the endocytic pathway. Trends Cell Biol 2002:296–299CrossRefGoogle Scholar
  193. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF Jr, Rejeski D et al (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6:1769–1780.  https://doi.org/10.3762/bjnano.6.181CrossRefGoogle Scholar
  194. Viarengo A, Nott JA (1993) Mechanisms of heavy-metal cation homeostasis in marine invertebrates. Comp Biochem Physiol 104:355–372Google Scholar
  195. Wang L, Bowman L, Lu Y et al (2005) Essential role of p53 in silica induced apoptosis. Am J Physiol 288(3):L488–L496Google Scholar
  196. Wang J, Liu Y, Jiao F, Lao F, Li W, GU Y et al (2008) Timedependent translocation and potential impairment on central nervous system by intranasally instilled TiO 2 nanoparticles. Toxicology 254:82–90.  https://doi.org/10.1016/j.tox.2008.09.014CrossRefGoogle Scholar
  197. Wang L, Mercer RR, Rojanasakul Y et al (2010) Direct fibrogenic effects of dispersed single-walled carbon nanotubes on human lung fibroblasts. J Toxicol Environ Health A 73(5–6):410–422CrossRefGoogle Scholar
  198. Wang Y, Aker WG, Hwang HM et al (2011) A study of the mechanism of in vitro cytotoxicity of metal oxide nanoparticles using catfish primary hepatocytes and human HepG2 cells. Sci Total Environ 409:4753–4762CrossRefGoogle Scholar
  199. Wang C-C, Wang S, Xia Q et al (2013) Phototoxicity of zinc oxide nanoparticles in HaCaT keratinocytes e generation of oxidative DNA damage during UVA and visible light irradiation. J Nanosci Nanotechnol 13:3880–3888CrossRefGoogle Scholar
  200. Warheit DB (2004) Nanoparticles: health impacts? Mater Today 7:32–35CrossRefGoogle Scholar
  201. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125CrossRefGoogle Scholar
  202. Wennerberg A, Jimbo R, Allard S, Skarnemark G, Andersson M (2011) In vivo stability of hydroxyapatite nanoparticles coated on titanium implant surfaces. Int J Oral Maxillofac Implants 26:1161–1166Google Scholar
  203. Wilson MR, Lightbody JH, Donaldson K, Sales J, Stone V (2002) Interactions between ultrafine particles and transition metals in vivo and in vitro. Toxicol Appl Pharmacol 184(3):172–179CrossRefGoogle Scholar
  204. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(part 1):17–29CrossRefGoogle Scholar
  205. Wu J, Liu W, Xue C, Zhou S, LAN F, Bi L et al (2009) Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicol Lett 191:1–8.  https://doi.org/10.1016/j.toxlet.2009.05.020CrossRefGoogle Scholar
  206. Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006a) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807.  https://doi.org/10.1021/nl061025kCrossRefGoogle Scholar
  207. Xia T, Kovochich M, Brant J et al (2006b) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807CrossRefGoogle Scholar
  208. Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell specific endocytic and mitochondrial injury pathways. ACS Nano 2(1):85–96CrossRefGoogle Scholar
  209. Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S et al (2009) Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 3:3273–3286.  https://doi.org/10.1021/nn900918wCrossRefGoogle Scholar
  210. Xie H, Mason MM, Wise JP Sr (2011) Genotoxicity of metal nanoparticles. Rev Environ Health 26(4):251–268CrossRefGoogle Scholar
  211. Yah CS, Simate GS, Iyuke SE (2012) Nanoparticles toxicity and their routes of exposures. Pak J Pharm Sci 25:477–491Google Scholar
  212. Ye J, Zhang X, Young HA, Mao Y, Shi X (1995) Chromium (VI)-induced nuclear factor-κB activation in intact cells via free radical reactions. Carcinogenesis 16(10):2401–2405CrossRefGoogle Scholar
  213. Yin JJ, Zhao B, Xia Q et al (2012a) Electron spin resonance spectroscopy for studying the generation and scavenging of reactive oxygen species by nanomaterials. In: Liang X-J (ed) Nanopharmaceuticals: the potential application of nanomaterials. World Scientific Publishing Company, Singapore, pp 375–400CrossRefGoogle Scholar
  214. Yin JJ, Liu J, Ehrenshaft M et al (2012b) Phototoxicity of nano titanium dioxides in HaCaT keratinocytes e generation of reactive oxygen species and cell damage. Toxicol Appl Pharmacol 263:81–88CrossRefGoogle Scholar
  215. Zhang Z, Berg A, Levanon H, Fessenden RW, Meisel D (2003) On the interactions of free radicals with gold nanoparticles. J Am Chem Soc 125(26):7959–7963CrossRefGoogle Scholar
  216. Zhang XQ, Yin LH, Tang M, Pu YP (2011) ZnO, TiO2, SiO2, and Al2O3 nanoparticles induced toxic effects on human fetal lung fibroblasts. Biomed Environ Sci 24(6):661–669Google Scholar
  217. Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR (2010) New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett 10(5):1677–1681CrossRefGoogle Scholar
  218. Zhu Y, Zhao Q, Li Y, Cai X, Li W (2006) The interaction and toxicity of multi-walled carbon nanotubes. Nanotechnol 6:1357–1364Google Scholar
  219. Zhu M, Feng W, Wang Y et al (2009) Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol Sci 107(2):342–351CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations