Advertisement

Consequences of Oxidative Stress and ROS-Mediated Pathways Cellular Signaling Stress Response

  • Loutfy H. MadkourEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

There are numerous extra- and intracellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause damage to biomolecules such as proteins, nucleic acid, and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA. As common second messengers of many stress factors, reactive oxygen species (ROS) may act as a regulator of cellular responses to extracellular environmental signaling. Furthermore, increasing evidence indicates that ROS may act as a mediator of lipid accumulation, which is associated with dramatic changes in the transcriptome, proteome, and metabolome. However, the specific mechanisms of ROS involvement in the cross talk between extracellular stress signaling and intracellular lipid synthesis require further investigation.

Keywords

Reactive oxygen species Cellular signaling Stress response Lipid accumulation 

References

  1. Abate C, Patel L, Rauscher FJ, Curran T (1990) Redox regulation of fos and jun DNA binding activity in vitro. Science 249:1157–1161CrossRefGoogle Scholar
  2. Abe J, Kusuhara M, Ulevitch RJ, Berk BC, Lee JD (1996) Big mitogen-activated protein kinase1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271:16586–16590CrossRefGoogle Scholar
  3. Abraham AG, O’Neill E (2014) PI3K/Akt-mediated regulation of p53 in cancer. Biochem Soc Trans 42(4):798–803CrossRefGoogle Scholar
  4. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ (1999) Regulation of JNK signaling by GSTp. EMBO J 18:1321–1334CrossRefGoogle Scholar
  5. Aguirre J, Rios-Momberg M, Hewitt D, Hansberg W (2005) Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118.  https://doi.org/10.1016/j.tim.2005.01.007CrossRefGoogle Scholar
  6. Ahn IE, Ju JH, Lee SY et al (2012) Upregulation of stromal cell derived factor by IL-17 and IL 18 via a phosphatidylinositol 3- kinase-dependent pathway. Scand J Immunol 76(4):433–439CrossRefGoogle Scholar
  7. Aicart-Ramos C, Sánchez-Ruiloba L, Gómez-Parrizas M, Zaragoza C, Iglesias T, Rodríguez-Crespo I (2014) Protein kinase D activity controls endothelial nitric oxide synthesis. J Cell Sci 127(part 15):3360–3372CrossRefGoogle Scholar
  8. Aikawa R, Komuro I, Yamazaki T, Zou Y, Kudoh S, Tanaka M, Shiojima I, Hiroi Y, Yazaki Y (1997) Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J Clin Invest 100:1813–1821CrossRefGoogle Scholar
  9. Alfadda AA, Sallam RM (2012) Reactive oxygen species in health and disease. J Biomed Biotechnol 2012, Article ID936486:14 pGoogle Scholar
  10. An B, Chen Y, Li B, Qin G, Tian S (2014) Ca2+-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins. J Proteomics 109:38–49CrossRefGoogle Scholar
  11. Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32(6):491–509CrossRefGoogle Scholar
  12. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662CrossRefGoogle Scholar
  13. Baldwin AS (2012) Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 246(1):327–345CrossRefGoogle Scholar
  14. Banan A, Fields JZ, Zhang Y, Keshavarzian A (2001) Phospholipase C-γ inhibition prevents EGF protection of intestinal cytoskeleton and barrier against oxidants. Am J Physiol Gastrointest Liver Physiol 281(2):G412–G423CrossRefGoogle Scholar
  15. Bao L, Avshalumov MV, Patel JC, Lee CR, Miller EW, Chang CJ, Rice ME (2009) Mitochondria are the source of hydrogen peroxide for dynamic brain-cell signaling. J Neurosci 29:9002–9010CrossRefGoogle Scholar
  16. Bar-Shai M, Reznick AZ (2006) Reactive nitrogen species induce nuclear factor-κBmediated protein degradation in skeletal muscle cells. Free Radic Biol Med 40:2112–2125CrossRefGoogle Scholar
  17. Basak S, Hoffmann A (2008) Crosstalk via the NF-B signaling system. Cytokine Growth Factor Rev 19(3–4):187–197CrossRefGoogle Scholar
  18. Basañez G, Soane L, Hardwick JM (2012) A new view of the lethal apoptotic pore. PLoS Biol 10(9), Article ID e1001399CrossRefGoogle Scholar
  19. Bauer J, Namineni S, Reisinger F, Zöller J, Yuan D, Heikenwälder M (2012) Lymphotoxin, NF-ĸB, and cancer: the dark side of cytokines. Dig Dis 30(5):453–468CrossRefGoogle Scholar
  20. Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313CrossRefGoogle Scholar
  21. Bhattacharjee S (2012) The language of reactive oxygen species signaling in plants. J. Bot. 2012:985298.  https://doi.org/10.1155/2012/985298CrossRefGoogle Scholar
  22. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE (2014) Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev 94:329–354CrossRefGoogle Scholar
  23. Bogeski I, Niemeyer BA (2014) Redox regulation of ion channels. Antioxid Redox Signal 21(6):859–862CrossRefGoogle Scholar
  24. Bonizzi G, Karin M (2004) The two NF-B activation pathways and their role in innate and adaptive immunity. Trends Immunol 25(6):280–288CrossRefGoogle Scholar
  25. Bos JL, de Rooij J, Reedquist KA (2001) Rap1 signalling: adhering to new models. Nat Rev Mol Cell Biol 2:369–377CrossRefGoogle Scholar
  26. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472CrossRefGoogle Scholar
  27. Brennan JP, Bardswell SC, Burgoyne JR et al (2006) Oxidantinduced activation of type I protein kinase A is mediated by RI subunit interprotein disulfide bond formation. J Biol Chem 281(31):21827–21836CrossRefGoogle Scholar
  28. Breuer G, Lamers PP, Martens DE, Draaisma RB, Wijffels RH (2013) Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresour Technol 143:1–9.  https://doi.org/10.1016/j.biortech.2013.05.105CrossRefGoogle Scholar
  29. Brini M, Calì T, Ottolini D, Carafoli E (2013) The plasma membrane calcium pump in health and disease. FEBS J 280(21):5385–5397CrossRefGoogle Scholar
  30. Brinkkoetter P-T, Song H, Lösel R et al (2008) Hypothermic injury: themitochondrial calcium, ATP and ROS love-hate triangle out of balance. Cell Physiol Biochem 22(1–4):195–204CrossRefGoogle Scholar
  31. Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47(9):1239–1253CrossRefGoogle Scholar
  32. Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299CrossRefGoogle Scholar
  33. Calise J, Powell SR (2013) The ubiquitin proteasome system and myocardial ischemia. Am J Physiol Heart Circulatory Physiol 304(3):H337–H349CrossRefGoogle Scholar
  34. Candé C, Cecconi F, Dessen P, Kroemer G (2002) Apoptosis-inducing factor (AIF): key to the conserved caspase-independent pathways of cell death? J Cell Sci 115:4727–4734CrossRefGoogle Scholar
  35. Cantrell DA (2001) Phosphoinositide 3-kinase signalling pathways. J Cell Sci 114:1439–1445Google Scholar
  36. Carmel-Harel O, Stearman R, Gasch AP, Botstein D, Brown PO, Storz G (2001) Role of thioredoxin reductase in the Yap1p-dependent response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 39:595–605.  https://doi.org/10.1046/j.1365-2958.2001.02255.xCrossRefGoogle Scholar
  37. Castro-Caldas M, Carvalho AN, Rodrigues E, Henderson C, Wolf CR, Gama MJ (2012) Glutathione S-transferase pi mediates MPTP-induced c-Jun N-terminal kinase activation in the nigrostriatal pathway. Mol Neurobiol 45(3):466–477CrossRefGoogle Scholar
  38. Cedergren J, Forslund T, Sundqvist T, Skogh T (2007) Intracellular oxidative activation in synovial fluid neutrophils from patients with rheumatoid arthritis but not from other arthritis patients. J Rheumatol 34:2162–2170Google Scholar
  39. Cerhan JR, Saag KG, Merlino LA, Mikuls TR, Criswell LA (2003) Antioxidant micronutrients and risk of rheumatoid arthritis in a cohort of older women. Am J Epidemiol 157:345–354CrossRefGoogle Scholar
  40. Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87:1–14.  https://doi.org/10.1016/S1389-1723(99)80001-2CrossRefGoogle Scholar
  41. Chaube R, Hess DT, Wang Y-J et al (2014) Regulation of the skeletal muscle ryanodine receptor/Ca2+-release channel RyR1 by S-palmitoylation. J Biol Chem 289(12):8612–8619CrossRefGoogle Scholar
  42. Chen Z, Gibson TB, Robinson F et al (2001) MAP kinases. Chem Rev 101(8):2449–2476CrossRefGoogle Scholar
  43. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ (2003) Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem 278(38):36027–36031CrossRefGoogle Scholar
  44. Chen J, Adikari M, Pallai R, Parekh HK, Simpkins H (2008) Dihydrodiol dehydrogenases regulate the generation of reactive oxygen species and the development of cisplatin resistance in human ovarian carcinoma cells. Cancer Chemother Pharmacol 61(6):979–987CrossRefGoogle Scholar
  45. Chen JR, Lazarenko OP, Blackburn ML, Mercer KE, Badger TM, Ronis MJ (2015) p47phox-Nox2-dependent ROS signaling inhibits early bone development in mice but protects against skeletal aging. J Biol Chem 290:14692–14704CrossRefGoogle Scholar
  46. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306.  https://doi.org/10.1016/j.biotechadv.2007.02.001CrossRefGoogle Scholar
  47. Cho KJ, Seo JM, Kim JH (2011) Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species. Mol Cell 32:1–5CrossRefGoogle Scholar
  48. Chokshi K, Pancha I, Trivedi K, George B, Maurya R, Ghosh A et al (2015) Biofuel potential of the newly isolated microalgae Acutodesmus dimorphus under temperature induced oxidative stress conditions. Bioresour Technol 180:162–171.  https://doi.org/10.1016/j.biortech.2014.12.102CrossRefGoogle Scholar
  49. Choy EH, Panayi GS (2001) Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 344:907–916CrossRefGoogle Scholar
  50. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762CrossRefGoogle Scholar
  51. Clancy RM, Rediske J, Tang X, Nijher N, Frenkel S, Philips M, Abramson SB (1997) Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 100:1789–1796CrossRefGoogle Scholar
  52. Clauzure M, Valdivieso AG, Massip Copiz MM, Schulman G, Teiber ML, Santa-Coloma TA (2014) Disruption of interleukin-1 autocrine signaling rescues complex I activity and improves ROS levels in immortalized epithelial cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS ONE 9(6), Article ID e99257CrossRefGoogle Scholar
  53. Cohen P, Frame S (2001) The renaissance of GSK3. Nat Rev Mol Cell Biol 2(10):769–776CrossRefGoogle Scholar
  54. Coley WB (1991) The treatment of malignant tumors by repeated inoculations of erysipelas. Historical article reprinted in Clin Orthop 262:3–11Google Scholar
  55. Collins LV, Hajizadeh S, Holme E, Jonsson IM, Tarkowski A (2005) Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol 75:995–1000CrossRefGoogle Scholar
  56. Conklin KA (2004) Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness. Integr Cancer Ther 3:294–300CrossRefGoogle Scholar
  57. Cota S, Wysocka E, Piorunek T, Rzymkowska M, Batura-Gabryel H, Torlinski L (2008) Oxidative stress markers in the blood of persons with different stages of obstructive sleep apnea syndrome. J Physiol Pharmacol 59:183–190Google Scholar
  58. Cowell CF, Döppler H, Yan IK, Hausser A, Umazawa Y, Storz P (2009) Mitochondrial diacylglycerol initiates protein-kinase-D1-mediated ROS signaling. J Cell Sci 122(7):919–928CrossRefGoogle Scholar
  59. Cross JV, Templeton DJ (2004) Thiol oxidation of cell signaling proteins: controlling an apoptotic equilibrium. J Cell Biochem 93(1):104–111CrossRefGoogle Scholar
  60. Cuadrado A, Nebreda AR (2010a) Mechanisms and functions of p38 MAPK signalling. Biochem J 429:403–417CrossRefGoogle Scholar
  61. Cuadrado A, Nebreda AR (2010b) Mechanisms and functions of p38 MAPK signalling. Biochem J 429(3):403–417CrossRefGoogle Scholar
  62. Dann SG, Golas J, Miranda M, Shi C, Wu J, Jin G, Rosfjord E, Upeslacis E, Klippel A (2014) p120 catenin is a key effector of a Ras-PKCɛ oncogenic signaling axis. Oncogene 33(11):1385–1394CrossRefGoogle Scholar
  63. Davies C, Tournier C (2012) Exploring the function of the JNK (c-Jun N-terminal kinase) signalling pathway in physiological and pathological processes to design novel therapeutic strategies. Biochem Soc Trans 40(1):85–89CrossRefGoogle Scholar
  64. del Rincon I, Escalante A (2003) Atherosclerotic cardiovascular disease in rheumatoid arthritis. Curr Rheumatol Rep 5:278–286CrossRefGoogle Scholar
  65. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003a) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70CrossRefGoogle Scholar
  66. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003b) AJNK-dependent pathway is required for TNF-induced apoptosis. Cell 115(1):61–70CrossRefGoogle Scholar
  67. Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M, Liu Z-G (2000) The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity 12(4):419–429CrossRefGoogle Scholar
  68. Dietrich S, Uppalapati R, Seiwert TY, Ma PC (2005) Role of c-MET in upper aerodigestive malignancies—from biology to novel therapies. J Environ Pathol Toxicol Oncol 24(3):149–162CrossRefGoogle Scholar
  69. Dinkova-Kostova AT, Holtzclaw WD, Cole RN et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U S A 99(18):11908–11913CrossRefGoogle Scholar
  70. do Carmo A, Balça-Silva J, Matias D, Lopes MC (2013) PKC signaling in glioblastoma. Cancer Biol Ther 14(4):287–294CrossRefGoogle Scholar
  71. Donot F, Fontana A, Baccou JC, Strub C, Schorr-Galindo S (2014) Single cell oils (SCOs) from oleaginous yeasts and moulds: production and genetics. Biomass Bioenergy 68:135–150.  https://doi.org/10.1016/j.biombioe.2014.06.016CrossRefGoogle Scholar
  72. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95CrossRefGoogle Scholar
  73. Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG (2013) Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 57:79–91CrossRefGoogle Scholar
  74. Eisenberg-Lerner A, Kimchi A (2012) PKD is a kinase of Vps34 that mediates ROS-induced autophagy downstream of DAPk. Cell Death Differ 19(5):788–797CrossRefGoogle Scholar
  75. Elmetwali T, Young LS, Palmer DH (2014) Fas-associated factor (Faf1) is a novel CD40 interactor that regulates CD40-induced NF-κB activation via a negative feedback loop. Cell Death Dis 5:e1213.  https://doi.org/10.1038/cddis.2014.172CrossRefGoogle Scholar
  76. Feldmann M, Maini RN (2001) Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 19:163–196CrossRefGoogle Scholar
  77. Felsenfeld A, Rodriguez M, Levine B (2013) New insights in regulation of calcium homeostasis. Curr Opin Nephrol Hypertens 22(4):371–376CrossRefGoogle Scholar
  78. Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194(1):7–15CrossRefGoogle Scholar
  79. Firestein GS, Zvaifler NJ (2002) How important are T cells in chronic rheumatoid synovitis?: II. T cell-independent mechanisms from beginning to end. Arthritis Rheum 46:298–308CrossRefGoogle Scholar
  80. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang XW, Geller DA, Tzeng E, Billiar TR (1996) Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci USA 93:2442–2447CrossRefGoogle Scholar
  81. Fraga CG, Oteiza PI (2002) Iron toxicity and antioxidant nutrients. Toxicology 180:23–32CrossRefGoogle Scholar
  82. Franco R, Panayiotidis MI, Cidlowski JA (2007) Glutathione depletion is necessary for apoptosis in lymphoid cells independent of reactive oxygen species formation. J Biol Chem 282:30452–30465CrossRefGoogle Scholar
  83. Franklin RA, Atherfold PA, McCubrey JA (2000) Calciuminduced ERK activation in human T lymphocytes occurs via p56Lck and CaM-kinase. Mol Immunol 37(11):675–683CrossRefGoogle Scholar
  84. Friday BB, Adjei AA (2008) Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin Cancer Res 14(2):342–346CrossRefGoogle Scholar
  85. Furukawa M, Xiong Y (2005) BTB protein keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the cullin 3-Roc1 ligase. Mol Cell Biol 25(1):162–171CrossRefGoogle Scholar
  86. Galluzzi L, Morselli E, Kepp O, Vitale I, Rigoni A, Vacchelli E, Michaud M, Zischka H, Castedo M, Kroemer G (2010a) Mitochondrial gateways to cancer. Mol Aspect Med 31:1–20CrossRefGoogle Scholar
  87. Galluzzi L, Morselli E, Kepp O et al (2010b) Mitochondrial gateways to cancer. Mol Aspects Med 31(1):1–20CrossRefGoogle Scholar
  88. Garcia-Rios E, Ramos-Alonso L, Guillamon JM (2016) Correlation between low temperature adaptation and oxidative stress in Saccharomyces cerevisiae. Front Microbiol 7:1199.  https://doi.org/10.3389/fmicb.2016.01199CrossRefGoogle Scholar
  89. Gardam S, Brink R (2014a) Non-canonical NF-κB signaling initiated by BAFF influences B cell biology at multiple junctures. Front Immunol 4:1–12CrossRefGoogle Scholar
  90. Gardam S, Brink R (2014) Non-canonical NF-B signaling initiated by BAFF influences B cell biology at multiple junctures. Front Immunol 4, article 509Google Scholar
  91. Gelderman KA, Hultqvist M, Pizzolla A, Zhao M, Nandakumar KS, Mattsson R, Holmdahl R (2007) Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J Clin Invest 117:3020–3028CrossRefGoogle Scholar
  92. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335.  https://doi.org/10.1038/nature11479CrossRefGoogle Scholar
  93. Ghibelli L, Diederich M (2010) Multistep and multitask Bax activation. Mitochondrion 10(6):604–613CrossRefGoogle Scholar
  94. Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233CrossRefGoogle Scholar
  95. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8(9):722–728CrossRefGoogle Scholar
  96. Gloire G, Piette J (2009) Redox regulation of nuclear post-translational modifications during NF-κB activation. Antioxid Redox Signal 11(9):2209–2222CrossRefGoogle Scholar
  97. Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, Antonsson B, Diolez P, Manon S, Martinou JC, Goubern M, Wang X (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626CrossRefGoogle Scholar
  98. Gordeeva AV, Zvyagilskaya RA, Labas YA (2003) Crosstalk between reactive oxygen species and calcium in living cells. Biochemistry 68(10):1077–1080Google Scholar
  99. Gouazé V, Andrieu-Abadie N, Cuvillier O, Malagarie-Cazenave S, Frisach MF, Mirault ME, Levade T (2002) Glutathione peroxidase-1 protects from CD95-induced apoptosis. J Biol Chem 277:42867–42874CrossRefGoogle Scholar
  100. Gouspillou G, Sgarioto N, Kapchinsky S et al (2014) Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans. FASEB J 28(4):1621–1633CrossRefGoogle Scholar
  101. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629CrossRefGoogle Scholar
  102. Grill B, Schrader JW (2002a) Activation of Rac-1, Rac-2, and Cdc42 by hemopoietic growth factors or cross-linking of the B-lymphocyte receptor for antigen. Blood 100:3183–3192CrossRefGoogle Scholar
  103. Grill B, Schrader JW (2002b) Activation of Rac-1, Rac-2, and Cdc42 by hemopoietic growth factors or cross-linking of the B-lymphocyte receptor for antigen. Blood 100(9):3183–3192CrossRefGoogle Scholar
  104. Grivennikova VG, Vinogradov AD (2013a) Mitochondrial production of reactive oxygen species. Biochemistry (Moscow) 78:1490–1511CrossRefGoogle Scholar
  105. Grivennikova VG, Vinogradov AD (2013b) Mitochondrial production of reactive oxygen species. Biochemistry 78(13):1490–1511Google Scholar
  106. Grootveld M, Henderson EB, Farrell A, Blake DR, Parkes HG, Haycock P (1991) Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-N.M.R. spectroscopy. Biochem J 273:459–467CrossRefGoogle Scholar
  107. Gross E, Sevier CS, Heldman N, Vitu E, Bentzur M, Kaiser CA, Thorpe C, Fass D (2006) Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p. Proc Natl Acad Sci USA 103:299–304CrossRefGoogle Scholar
  108. Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogenactivated protein kinase by H2O2. Role in cell survival following oxidant injury. J. Biol. Chem. 271:4138–4142CrossRefGoogle Scholar
  109. Hagiwara D, Sakamoto K, Abe K, Gomi K (2016) Signaling pathways for stress responses and adaptation in Aspergillus species: stress biology in the postgenomic era. Biosci Biotechnol Biochem 80:1667–1680.  https://doi.org/10.1080/09168451.2016.1162085CrossRefGoogle Scholar
  110. Hajizadeh S, DeGroot J, TeKoppele JM, Tarkowski A, Collins LV (2003) Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis. Arthritis Res Ther 5:R234–R240CrossRefGoogle Scholar
  111. Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831CrossRefGoogle Scholar
  112. Halestrap AP, Doran E, Gillespie JP, O’Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 28(2):170–177CrossRefGoogle Scholar
  113. Halestrap AP, Clarke SJ, Javadov SA (2004a) Mitochondrial permeability transition pore opening during myocardial reperfusion-a target for cardioprotection. Cardiovasc Res 61:372–385CrossRefGoogle Scholar
  114. Halestrap AP, Clarke SJ, Javadov SA (2004b) Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection. Cardiovasc Res 61(3):372–385CrossRefGoogle Scholar
  115. Halliday GM, Lyons JG (2008) Inflammatory doses of UV may not be necessary for skin carcinogenesis. Photochem Photobiol 84:272–283CrossRefGoogle Scholar
  116. Harrison IP, Selemidis S (2014) Understanding the biology of reactive oxygen species and their link to cancer: NADPH oxidases as novel pharmacological targets. Clin Exp Pharmacol Physiol 41(8):533–542CrossRefGoogle Scholar
  117. Haslund-Vinding J, McBean G, Jaquet V, Vilhardt F (2016) NADPH oxidases in oxidant production by microglia: activating receptors, pharmacology and association with disease. Br. J. Pharmacol. 173:1733–1749.  https://doi.org/10.1111/bph.13425CrossRefGoogle Scholar
  118. Hatano A, Okada J-I, Washio T, Hisada T, Sugiura S (2013) Mitochondrial colocalization with Ca2+ release sites is crucial to cardiac metabolism. Biophys J 104(2):496–504CrossRefGoogle Scholar
  119. Hayashi M, Fearns C, Eliceiri B, Yang Y, Lee J-D (2005) Big mitogen-activated protein kinase 1/extracellular signalregulated kinase 5 signaling pathway is essential for tumor-associated angiogenesis. Can Res 65(17):7699–7706CrossRefGoogle Scholar
  120. Hayes JD, McMahon M (2009) NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci 34(4):176–188CrossRefGoogle Scholar
  121. Henrotin YE, Bruckner P, Pujol J-PL (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11:747–755CrossRefGoogle Scholar
  122. Hernandez-Onate MA, Herrera-Estrella A (2015) Damage response involves mechanisms conserved across plants, animals and fungi. Curr Genet 61:359–372.  https://doi.org/10.1007/s00294-014-0467-5CrossRefGoogle Scholar
  123. Herve C, Tonon T, Collen J, Corre E, Boyen C (2006) NADPH oxidases in Eukaryotes: red algae provide new hints! Curr Genet 49:190–204.  https://doi.org/10.1007/s00294-005-0044-zCrossRefGoogle Scholar
  124. Hideg E, Jansen MAK, Strid A (2013) UV-B exposure, ROS, and stress: inseparable companions or loosely linked associates? Trends Plant Sci 18:107–115.  https://doi.org/10.1016/j.tplants.2012.09.003CrossRefGoogle Scholar
  125. Hitchon CA, El-Gabalawy HS (2004) Oxidation in rheumatoid arthritis. Arthritis Res Ther 6:265–278CrossRefGoogle Scholar
  126. Hong J, Qian T, Le Q et al (2012) NGF promotes cell cycle progression by regulating D-type cyclins via PI3K/Akt andMAPK/Erk activation in human corneal epithelial cells. Mol Vis 18:758–764Google Scholar
  127. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M et al (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639.  https://doi.org/10.1111/j.1365-313X.2008.03492.xCrossRefGoogle Scholar
  128. Huang RP, Adamson ED (1993) Characterization of the DNA-binding properties of the early growth response-1 (egr-1) transcription factor: evidence for modulation by a redox mechanism. DNA Cell Biol 12:265–273CrossRefGoogle Scholar
  129. Ikner A, Shiozaki K (2005) Yeast signaling pathways in the oxidative stress response. Mutat Res 569:13–27.  https://doi.org/10.1016/j.mfrmmm.2004.09.006CrossRefGoogle Scholar
  130. Ilatovskaya DV, Pavlov TS, Levchenko V, Staruschenko A (2013) “ROS production as a common mechanism of ENaC regulation by EGF, insulin, and IGF-1. Am J Physiol Cell Physiol 304(1):C102–C111CrossRefGoogle Scholar
  131. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, Bodmer JL, Schröter M, Burns K, Mattmann C, Rimoldi D (1997) Inhibition of death receptor signals by cellular FLIP. Nature 388:190–195CrossRefGoogle Scholar
  132. Isasa M, Zuin A, Crosas B (2012) Integration of multiple ubiquitin signals in proteasome regulation. Methods Mol Biol 910:337–370CrossRefGoogle Scholar
  133. Ito Y, Nakashima S, Nozawa Y (1997) Hydrogen peroxide-induced phospholipase D activation in rat Pheochromocytoma PC12 cells: possible involvement of Ca2+-dependent protein tyrosine kinase. J Neurochem 69:729–736CrossRefGoogle Scholar
  134. Jacquier N, Choudhary V, Mari M, Toulmay A, Reggiori F, Schneiter R (2011) Lipid droplets are functionally connected to the endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Sci 124:2424–2437.  https://doi.org/10.1242/jcs.076836CrossRefGoogle Scholar
  135. Jahngen-Hodge J, Obin MS, Gong X et al (1997) Regulation of ubiquitin-conjugating enzymes by glutathione following oxidative stress. J Biol Chem 272(45):28218–28226CrossRefGoogle Scholar
  136. Jain AK, Jaiswal AK (2007) GSK-3 acts upstream of Fyn kinase in regulation of nuclear export and degradation of NFE2 related factor 2. J Biol Chem 282(22):16502–16510CrossRefGoogle Scholar
  137. Jakobsen AN, Aasen IM, Josefsen KD, Strom AR (2008) Accumulation of docosahexaenoic acid-rich lipid in thraustochytrid Aurantiochytrium sp. strain T66: effects of N and P starvation andO2 limitation. Appl Microbiol Biotechnol 80:297–306.  https://doi.org/10.1007/s00253-008-1537-8CrossRefGoogle Scholar
  138. Jeon HB, Choi ES, Yoon JH et al (2007) Aproteomics approach to identify the ubiquitinated proteins in mouse heart. Biochem Biophys Res Commun 357(3):731–736CrossRefGoogle Scholar
  139. Ji XJ, Ren LJ, Nie ZK, Huang H, Ouyang PK (2014) Fungal arachidonic acid-rich oil: research, development and industrialization. Crit Rev Biotechnol 34:197–214.  https://doi.org/10.3109/07388551.2013.778229CrossRefGoogle Scholar
  140. Ji XJ, Ren LJ, Huang H (2015) Omega-3 biotechnology: a green and sustainable process for omega-3 fatty acids production. Front Bioeng Biotechnol 3:158.  https://doi.org/10.3389/fbioe.2015.00158CrossRefGoogle Scholar
  141. Jia D, Koonce NA, Griffin RJ, Jackson C, Corry PM (2010) Prevention and mitigation of acute death of mice after abdominal irradiation by the antioxidant N-acetylcysteine (NAC). Radiat Res 173:579–589CrossRefGoogle Scholar
  142. Joneson T, Bar-Sagi D (1998) A Rac1 effector site controlling mitogenesis through superoxide production. J Biol Chem 273:17991–17994CrossRefGoogle Scholar
  143. Journo C, Bonnet A, Favre-Bonvin A, Turpin J, Vinera J, Côté E, Chevalier SA, Kfoury Y, Bazarbachi A, Pique C, Mahieux R (2013) Human T cell leukemia virus type 2 tax-mediated NF-κB activation involves a mechanism independent of Tax conjugation to ubiquitin and SUMO. J Virol 87(2):1123–1136CrossRefGoogle Scholar
  144. Juneja A, Ceballos RM, Murthy GS (2013) Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6:4607–4638.  https://doi.org/10.3390/en6094607CrossRefGoogle Scholar
  145. Jung K-A, Kwak M-K (2010) The Nrf2 system as a potential target for the development of indirect antioxidants. Molecules 15(10):7266–7291CrossRefGoogle Scholar
  146. Junttila MR, Li SP, Westermarck J (2008a) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. Faseb J 22:954–965CrossRefGoogle Scholar
  147. Junttila MR, Li S-P, Westermarck J (2008b) Phosphatasemediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22(4):954–965CrossRefGoogle Scholar
  148. Kamata H, Honda SI, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661CrossRefGoogle Scholar
  149. Kang SW (2007) Two axes in platelet-derived growth factor signaling: tyrosine phosphorylation and reactive oxygen species. Cell Mol Life Sci 64:533–541CrossRefGoogle Scholar
  150. Kanwal R, Pandey M, Bhaskaran N et al (2014) Protection against oxidative DNA damage and stress in human prostate by glutathione S-transferase P1. Mol Carcinog 53(1):8–18CrossRefGoogle Scholar
  151. Kanzaki H, Shinohara F, Kajiya M, Kodama T (2013) The Keap1/Nrf2 protein axis plays a role in osteoclast differentiation by regulating intracellular reactive oxygen species signaling. J Biol Chem 288(32):23009–23020CrossRefGoogle Scholar
  152. Kaplan P, Babusikova E, Lehotsky J, Dobrota D (2003) Free radical-induced protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. Mol Cell Biochem 248(1–2):41–47CrossRefGoogle Scholar
  153. Karin M (1999) The beginning of the end: IkappaB kinase (IKK) and NF-kappaB activation. J Biol Chem 274:27339–27342CrossRefGoogle Scholar
  154. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309CrossRefGoogle Scholar
  155. Katagiri K, Matsuzawa A, Ichijo H (2010) Regulation of apoptosis signal-regulating kinase 1 in redox signaling. Methods Enzymol 474:277–288CrossRefGoogle Scholar
  156. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  157. Kim JH, Na HJ, Kim CK, Kim JY, Ha KS, Lee H, Chung HT, Kwon HJ, Kwon YG, Kim YM (2008) The non-provitamin A carotenoid, lutein, inhibits NF-κBdependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-κB-inducing kinase pathways: role of H2O2 in NF-κB activation. Free Radic Biol Med 45(6):885–896CrossRefGoogle Scholar
  158. Kim KC, Kang KA, Zhang R et al (2010) Up-regulation of Nrf2- mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol 42(2):297–305CrossRefGoogle Scholar
  159. Kim M, Otsubo R, Morikawa H et al (2014) Bacterial effectors and their functions in the ubiquitin-proteasome system: insight from the modes of substrate recognition. Cells 3(3):848–864CrossRefGoogle Scholar
  160. Knebel A, Rahmsdorf HJ, Ullrich A, Herrlich P (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15:5314–5325CrossRefGoogle Scholar
  161. Konràd C, Kiss G, Töröcsik B et al (2011) A distinct sequence in the adenine nucleotide translocase from Artemia franciscana embryos is associated with insensitivity to bongkrekate and atypical effects of adenine nucleotides on Ca2+ uptake and sequestration. FEBS J 278(5):822–836CrossRefGoogle Scholar
  162. Kruk JS, Vasefi v, Heikkila JJ, Beazely MA (2013) Reactive oxygen species are required for 5-HT-induced transactivation of neuronal platelet-derived growth factor and TrkB receptors, but not for ERK1/2 activation. PLoS ONE 8(9), Article ID e77027CrossRefGoogle Scholar
  163. Kumar A, Wu H, Collier-Hyams LS et al (2007) Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J 26(21):4457–4466CrossRefGoogle Scholar
  164. Kwak Y-D, Wang B, Li JJ et al (2012) Upregulation of the E3 ligase NEDD4-1 by oxidative stress degrades IGF-1 receptor protein in neurodegeneration. J Neurosci 32(32):10971–10981CrossRefGoogle Scholar
  165. Kwon J, Shatynski KE, Chen H, Morand S, De Deken X, Miot F, Leto TL, Williams MS (2010) The nonphagocytic NADPH oxidase Duox1 mediates a positive feedback loop during T cell receptor signaling. Sci Signal 3:ra59CrossRefGoogle Scholar
  166. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869CrossRefGoogle Scholar
  167. Lamb JA, Ventura JJ, Hess P, Flavell RA, Davis RJ (2003) JunD mediates survival signaling by the JNK signal transduction pathway. Mol Cell 11:1479–1489CrossRefGoogle Scholar
  168. Lambeth JD (2004a) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189CrossRefGoogle Scholar
  169. Lambeth JD (2004b) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4(3):181–189CrossRefGoogle Scholar
  170. Laoteng K, Certik M, Cheevadhanark S (2011) Mechanisms controlling lipid accumulation and polyunsaturated fatty acid synthesis in oleaginous fungi. Chem Pap 65:97–103.  https://doi.org/10.2478/s11696-010-0097-4CrossRefGoogle Scholar
  171. Lara-Ortiz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255.  https://doi.org/10.1046/j.1365-2958.2003.03800.xCrossRefGoogle Scholar
  172. Lara-Rojas F, Sanchez O, Kawasaki L, Aguirre J (2011) Aspergillus nidulans transcription factor AtfA interacts with the MAPK SakA to regulate general stress responses, development and spore functions. Mol Microbiol 80:436–454.  https://doi.org/10.1111/j.1365-2958.2011.07581.xCrossRefGoogle Scholar
  173. Large M, Reichert S, Hehlgans S, Fournier C, Rödel C, Rödel F (2014) A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiat Oncol 9, Article 80CrossRefGoogle Scholar
  174. Laskin DL, Sunil VR, Gardner CR, Laskin JD (2011) Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 51:267–288CrossRefGoogle Scholar
  175. Lee J-M, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37(2):139–143Google Scholar
  176. Lee HC, Wei YH (2000) Mitochondrial role in life and death of the cell. J Biomed Sci 7:2–15CrossRefGoogle Scholar
  177. Lee I-T, Yang C-M (2013) Inflammatory signalings involved in airway and pulmonary diseases. Mediat Inflamm 2013, Article ID791231, 12 pGoogle Scholar
  178. Lee S-R, Yang K-S, Kwon J, Lee C, Jeong W, Rhee SG (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277(23):20336–20342CrossRefGoogle Scholar
  179. Lee SH, Chang DK, Goel A, Boland CR, Bugbee W, Boyle DL, Firestein GS (2003) Microsatellite instability and suppressed DNA repair enzyme expression in rheumatoid arthritis. J Immunol 170:4869Google Scholar
  180. Lee K, Won HY, Bae MA, Hong JH, Hwang ES (2011) Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/Treg cells. Proc Natl Acad Sci U S A 108:9548–9553CrossRefGoogle Scholar
  181. Lee YM, Song BC, Yeum KJ (2015) Impact of volatile anesthetics on oxidative stress and inflammation. BioMed Res Int 2015.  https://doi.org/10.1155/2015/242709Google Scholar
  182. Lei H, Kazlauskas A (2009) Growth factors outside of the platelet-derived growth factor (PDGF) family employ reactive oxygen species/Src family kinases to activate PDGF receptor and thereby promote proliferation and survival of cells. J Biol Chem 284(10):6329–6336CrossRefGoogle Scholar
  183. Lei AP, Chen H, Shen GM, Hu ZL, Chen L, Wang JX (2012) Expression of fatty acid synthesis genes and fatty acid accumulation in Haematococcus pluvialis under different stressors. Biotechnol Biofuels 5:18.  https://doi.org/10.1186/1754-6834-5-18CrossRefGoogle Scholar
  184. Leonard SS, Harris GK, Shi X (2004) Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 37(12):1921–1942CrossRefGoogle Scholar
  185. León-Buitimea A, Rodríguez-Fragoso L, Lauer FT, Bowles H, Thompson TA, Burchiel SW (2012) Ethanol-induced oxidative stress is associated with EGF receptor phosphorylation in MCF-10A cells overexpressing CYP2E1. Toxicol Lett 209(2):161–165CrossRefGoogle Scholar
  186. Leslie NR, Downes CP (2002) PTEN: the down side of PI 3-kinase signalling. Cell Signal 14(4):285–295CrossRefGoogle Scholar
  187. Lewis A, Hayashi T, Su T-P, Betenbaugh MJ (2014) Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 46(1):1–15CrossRefGoogle Scholar
  188. Li Q, Engelhardt JF (2006) Interleukin-1 induction of NFB is partially regulated by H2O2-mediated activation of NFB-inducing kinase. J Biol Chem 281(3):1495–1505CrossRefGoogle Scholar
  189. Li G, Wang Y (2014) Protein kinase D: a new player among the signaling proteins that regulate functions in the nervous system. Neurosci Bull 30(3):497–504CrossRefGoogle Scholar
  190. Li EK, Tam LS, Tomlinson B (2004) Leflunomide in the treatment of rheumatoid arthritis. Clin Therapeut 26:447–459CrossRefGoogle Scholar
  191. Lin J, Shen H, Tan H, Zhao X, Wu S, Hu C et al (2011) Lipid production by Lipomyces starkeyi, cells in glucose solution without auxiliary nutrients. J Biotechnol 152:184–188.  https://doi.org/10.1016/j.jbiotec.2011.02.010CrossRefGoogle Scholar
  192. Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4CrossRefGoogle Scholar
  193. Liu Y, Chen XJ (2013) Adenine nucleotide translocase, mitochondrial stress, and degenerative cell death. Oxidative Med Cell Longevity 2013, Article ID 146860, 10 pGoogle Scholar
  194. Liu B, Liu J, Sun PP, Ma XN, Jiang Y, Chen F (2015) Sesamol enhances cell growth and the biosynthesis and accumulation of docosahexaenoic acid in the microalga Crypthecodinium cohnii. J Agric Food Chem 63:5640–5645.  https://doi.org/10.1021/acs.jafc.5b01441CrossRefGoogle Scholar
  195. Lodovici M, Bigagli E (2011) Oxidative stress and air pollution exposure. J Toxicol 2011:1–9.  https://doi.org/10.1155/2011/487074CrossRefGoogle Scholar
  196. Lushchak VI (2011) Adaptive response to oxidative stress: bacteria, fungi, plants and animals. Comp Biochem Physiol C 153:175–190.  https://doi.org/10.1016/j.cbpc.2010.10.004CrossRefGoogle Scholar
  197. Lushington GH, Zaidi A, Michaelis ML (2005) Theoretically predicted structures of plasma membrane Ca2+-ATPase and their susceptibilities to oxidation. J Mol Graph Model 24(3):175–185CrossRefGoogle Scholar
  198. Madesh M, Hajnóczky G (2001) VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155:1003–1016CrossRefGoogle Scholar
  199. Maki A, Berezesky IK, Fargnoli J, Holbrook NJ, Trump BF (1992) Role of [Ca2+] in induction of c-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress. Faseb J 6:919–924CrossRefGoogle Scholar
  200. Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198.  https://doi.org/10.1016/j.tem.2007.04.004CrossRefGoogle Scholar
  201. Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC (2009) Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 11(11):2685–2700CrossRefGoogle Scholar
  202. Maryanovich M, Gross A (2013) A ROS rheostat for cell fate regulation. Trends Cell Biol 23(3):129–134CrossRefGoogle Scholar
  203. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N (2016) Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11:e0152925.  https://doi.org/10.1371/journal.pone.0152925CrossRefGoogle Scholar
  204. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136(3):261–265CrossRefGoogle Scholar
  205. Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2014) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136:261–265CrossRefGoogle Scholar
  206. Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7(3–4):472–481CrossRefGoogle Scholar
  207. Matzinger P (2002) The danger model: a renewed sense of self. Science 296:301–305CrossRefGoogle Scholar
  208. McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochem Biophys Acta 1818(6):1444–1450CrossRefGoogle Scholar
  209. McStay GP, Clarke SJ, Halestrap AP (2002) Role of critical thiol groups on the matrix surface of the adenine nucleotide translocase in the mechanism of the mitochondrial permeability transition pore. Biochem J 367(2):541–548CrossRefGoogle Scholar
  210. Medan D, Wang L, Toledo D, Lu B, Stehlik C, Jiang BH, Shi X, Rojanasakul Y (2005) Regulation of Fas (CD95)-induced apoptotic and necrotic cell death by reactive oxygen species in macrophages. J Cell Physiol 203:78–84CrossRefGoogle Scholar
  211. Meloni G, Vašák M (2011) Redox activity of -synuclein-Cu is silenced by Zn7-metallothionein-3. Free Radic Biol Med 50(11):1471–1479CrossRefGoogle Scholar
  212. Meng J, Yu P, Jiang H, Yuan T, Liu N, Tong J, Chen H, Bao N, Zhao J (2016) Molecular hydrogen decelerates rheumatoid arthritis progression through inhibition of oxidative stress. Am J Transl Res 8:4472–4477Google Scholar
  213. Menon KR, Balan R, Suraishkumar GK (2013) Stress induced lipid production in Chlorella vulgaris: relationship with specific intracellular reactive species levels. Biotechnol Bioeng 110:1627–1636.  https://doi.org/10.1002/bit.24835CrossRefGoogle Scholar
  214. Menzies KJ, Robinson BH, Hood DA (2009) Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. Am J Physiol Cell Physiol 296(2):C355–C362CrossRefGoogle Scholar
  215. Merksamer PI, Trusina A, Papa FR (2008) Real-time redox measurements during endoplasmic reticulum stress reveal interlinked protein folding functions. Cell 135:933–947CrossRefGoogle Scholar
  216. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, Pelicci PG (1999) The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402:309–313CrossRefGoogle Scholar
  217. Mignolet-Spruyt L, Xu EJ, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M et al (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844.  https://doi.org/10.1093/jxb/erw080CrossRefGoogle Scholar
  218. Miller A-F (2012) Superoxide dismutases: ancient enzymes and new insights. FEBS Lett 586(5):585–595CrossRefGoogle Scholar
  219. Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167.  https://doi.org/10.1089/ars.2012.5149CrossRefGoogle Scholar
  220. Mochly-Rosen D, Das K, Grimes KV (2012) Protein kinase C, an elusive therapeutic target? Nat Rev Drug Discov 11(12):937–957CrossRefGoogle Scholar
  221. Montezano AC, Burger D, Ceravolo GS, Yusuf H, Montero M, Touyz RM (2011) Novel nox homologues in the vasculature: focusing on Nox4 and Nox5. Clin Sci 120(4):131–141CrossRefGoogle Scholar
  222. Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N (2015) Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 41:295–308.  https://doi.org/10.3109/1040841X.2013.829416CrossRefGoogle Scholar
  223. Morano KA, Grant CM, Moye-Rowley WS (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics 190:1157–1195.  https://doi.org/10.1534/genetics.111.128033CrossRefGoogle Scholar
  224. Morciano G, Giorgi C, Bonora M et al (2015) Molecular identity of the mitochondrial permeability transition pore and its role in ischemia-reperfusion injury. J Mol Cell Cardiol 78:142–153CrossRefGoogle Scholar
  225. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969CrossRefGoogle Scholar
  226. Murata H, Ihara Y, Nakamura H, Yodoi J, Sumikawa K, Kondo T (2003) Glutaredoxin exerts an antiapoptotic effect by regulating the redox state of Akt. J Biol Chem 278(50):50226–50233CrossRefGoogle Scholar
  227. Murphy MP (2009) how mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefGoogle Scholar
  228. Myrset AH, Bostad A, Jamin N, Lirsac PN, Toma F, Gabrielsen OS (1993) DNA and redox state induced conformational changes in the DNA-binding domain of the Myb oncoprotein. EMBO J 12:4625–4633CrossRefGoogle Scholar
  229. Naranjo JR, Mellström B (2012) Ca2+-dependent transcriptional control of Ca2+ homeostasis. J Biol Chem 287(38):31674–31680CrossRefGoogle Scholar
  230. Narendhirakannan RT, Hannah MAC (2013) Oxidative stress and skin cancer: an overview. Indian J Clin Biochem 28:110–115CrossRefGoogle Scholar
  231. Newkirk MM, LePage K, Niwa T, Rubin L (1998) Advanced glycation endproducts (AGE) on IgG, a target for circulating antibodies in North American Indians with rheumatoid arthritis (RA). Cell Mol Biol (Noisy-le-grand) 44:1129–1138Google Scholar
  232. Newkirk MM, Goldbach-Mansky R, Lee J, Hoxworth J, McCoy A, Yarboro C, Klippel J, El-Gabalawy HS (2003) Advanced glycation end-product (AGE)-damaged IgG and IgM autoantibodies to IgG-AGE in patients with early synovitis. Arthritis Res Ther 5:R82–R90CrossRefGoogle Scholar
  233. Nguyen AN, Lee A, Place W, Shiozaki K (2000) Multistep phosphorelay proteins transmit oxidative stress signals to the fission yeast stress-activated protein kinase. Mol Biol Cell 11:1169–1181.  https://doi.org/10.1091/mbc.11.4.1169CrossRefGoogle Scholar
  234. Nguyen T, Sherratt PJ, Pickett CB (2003) Regulatorymechanisms controlling gene expression mediated by the antioxidant response element. Annu Rev Pharmacol Toxicol 43:233–260CrossRefGoogle Scholar
  235. Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80(1):315–360CrossRefGoogle Scholar
  236. Nicholsa JA, Katiyar SK (2010) Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res 302:71–83CrossRefGoogle Scholar
  237. Nie ZK, Deng ZT, Zhang AH, Ji XJ, Huang H (2014) Efficient arachidonic acid-rich oil production by Mortierella alpina through a three stage fermentation strategy. Bioprocess Biosyst Eng 37:505–511.  https://doi.org/10.1007/s00449-013-1015-2CrossRefGoogle Scholar
  238. Nielen MM, van Schaardenburg D, Reesink HW, Van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, Habibuw MR, Vandenbroucke JP, Dijkmans BA (2004) Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum 50:380–386CrossRefGoogle Scholar
  239. Nishida M, Ishikawa T, Saiki S et al (2013) Voltage-dependent Ntype Ca2+ channels in endothelial cells contribute to oxidative stress-related endothelial dysfunction induced by angiotensin II in mice. Biochem Biophys Res Commun 434(2):210–216CrossRefGoogle Scholar
  240. Nitti M, Pronzato MA, Marinari UM, Domenicotti C (2008) PKC signaling in oxidative hepatic damage. Mol Aspects Med 29(1–2):36–42CrossRefGoogle Scholar
  241. Nordgren KKS, Wallace KB (2014) Keap1 redox-dependent regulation of doxorubicin-induced oxidative stress response in cardiac myoblasts. Toxicol Appl Pharmacol 274(1):107–116CrossRefGoogle Scholar
  242. Obin M, Shang F, Gong X, Handelman G, Blumberg J, Taylor A (1998) Redox regulation of ubiquitin-conjugating enzymes: mechanistic insights using the thiol-specific oxidant diamide. FASEB J 12(7):561–569CrossRefGoogle Scholar
  243. Olala LO, Shapiro BA, Merchen TC, Wynn JJ, Bollag WB (2014) Protein kinase C and Src family kinases mediate angiotensin II-induced protein kinase D activation and acute aldosterone production. Mol Cell Endocrinol 392(1–2):173–181CrossRefGoogle Scholar
  244. Olayioye MA, Barisic S, Hausser A (2013) Multi-level control of actin dynamics by protein kinase D. Cell Signal 25(9):1739–1747CrossRefGoogle Scholar
  245. Olofsson P, Holmberg J, Tordsson J, Lu S, Åkerström B, Holmdahl R (2003) Positional identification of Ncf1 as a gene that regulates arthritis severity in rats. Nat Genet 33:25–32CrossRefGoogle Scholar
  246. Olsen NJ, Stein CM (2004) New drugs for rheumatoid arthritis. N Engl J Med 350:2167–2179.  https://doi.org/10.1056/NEJMra032906CrossRefGoogle Scholar
  247. Papa S, De Rasmo D (2013) Complex I deficiencies in neurological disorders. Trends Mol Med 19(1):61–69CrossRefGoogle Scholar
  248. Papa S, Rasmo DD, Technikova-Dobrova Z et al (2012) Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases. FEBS Lett 586(5):568–577CrossRefGoogle Scholar
  249. Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051.  https://doi.org/10.1002/ejlt.201100014CrossRefGoogle Scholar
  250. Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073.  https://doi.org/10.1002/ejlt.201100015CrossRefGoogle Scholar
  251. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21(8):921–926CrossRefGoogle Scholar
  252. Perier C, Tieu K, Guégan C, Caspersen C, Jackson-Lewis V, Carelli V, Martinuzzi A, Hirano M, Przedborski S, Vila M (2005) Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci U S A 102:19126–19131CrossRefGoogle Scholar
  253. Phull AR, Eo SH, Abbas Q, Ahmed M, Kim SJ (2016) Applications of chondrocyte based cartilage engineering: an overview. Biomed Res Int 2017:1–17CrossRefGoogle Scholar
  254. Phull AR, Majid M, Haq IU, Khan MR, Kim SJ (2017a) In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar. Int J Biol Macromol 97:468–480CrossRefGoogle Scholar
  255. Phull A-R, Eo S-H, Kim SJ (2017b) Oleanolic acid (OA) regulates inflammation and cellular dedifferentiation of chondrocytes via MAPK signaling pathways. Cell Mol Biol (Noisy-le-grand) 63:12–17CrossRefGoogle Scholar
  256. Pimienta G, Pascual J (2007a) Canonical and alternative MAPK signaling. Cell Cycle 6:2628–2632CrossRefGoogle Scholar
  257. Pimienta G, Pascual J (2007b) Canonical and alternative MAPK signaling. Cell Cycle 6(21):2628–2632CrossRefGoogle Scholar
  258. Plotnikov A, Zehorai E, Procaccia S, Seger R (1813) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 2011:1619–1633Google Scholar
  259. Plotnikov A, Zehorai E, Procaccia S, Seger R (2011) The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta Mol Cell Res 1813(9):1619–1633CrossRefGoogle Scholar
  260. Powell SR, Herrmann J, Lerman A, Patterson C, Wang X (2012) The ubiquitin-proteasome system and cardiovascular disease. Prog Mol Biol Transl Sci 109:295–346CrossRefGoogle Scholar
  261. Qin S, Inazu T, Takata M, Kurosaki T, Homma Y, Yamamura H (1996) Cooperation of tyrosine kinases p72syk and p53/56lyn regulates calcium mobilization in chicken B cell oxidant stress signaling. Eur J Biochem 236:443–449CrossRefGoogle Scholar
  262. Qiu X, Cheng JC, Chang HM, Leung PCK (2014) COX2 and PGE2 mediate EGF-induced E-cadherin-independent human ovarian cancer cell invasion. Endocr Relat Cancer 21(4):533–543CrossRefGoogle Scholar
  263. Quiñonez-Flores CM, González-Chávez SA, Del Río Nájera D, Pacheco-Tena C (2016) Oxidative stress relevance in the pathogenesis of the rheumatoid arthritis: a systematic review. BioMed Res Int 2016:6097417CrossRefGoogle Scholar
  264. Ralser M, Wamelink MMC, Latkolik S, Jansen EEW, Lehrach H, Jakobs C (2009) Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response. Nat Biotechnol 27:604–605.  https://doi.org/10.1038/nbt0709-604CrossRefGoogle Scholar
  265. Ramakrishnan P, Wang W (2004) Wallach, Receptor-specific signaling for both the alternative and the canonical NF-κB activation pathways by NF-κB-inducing kinase. Immunity 21:477–489CrossRefGoogle Scholar
  266. Ramakrishnan P, Wang W, Wallach D (2004) Receptor-specific signaling for both the alternative and the canonical NF-B activation pathways by NF-B-inducing kinase. Immunity 21(4):477–489CrossRefGoogle Scholar
  267. Ramirez-Correa GA, Cortassa S, Stanley B, Gao WD, Murphy AM (2010) Calcium sensitivity, force frequency relationship and cardiac troponin I: critical role of PKA and PKC phosphorylation sites. J Mol Cell Cardiol 48(5):943–953CrossRefGoogle Scholar
  268. Rao VK, Carlson EA (1842) Yan SS (2014) Mitochondrial permeability transition pore is a potential drug target for neurodegeneration. Biochim Biophys Acta (BBA) Mol Basis Dis 8:1267–1272Google Scholar
  269. Ravingerová T, Barančík M, Strnisková M (2003a) Mitogen-activated protein kinases: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247:127–138CrossRefGoogle Scholar
  270. Ravingerová T, Barančík M, Strnisková M (2003b) Mitogenactivated protein kinase: a new therapeutic target in cardiac pathology. Mol Cell Biochem 247(1–2):127–138CrossRefGoogle Scholar
  271. Reczek CR, Chandel NS (2015) ROS-dependent signal transduction. Curr Opin Cell Biol 33:8–13.  https://doi.org/10.1016/j.ceb.2014.09.010CrossRefGoogle Scholar
  272. Reddy JK, Hashimoto T (2001) Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu Rev Nutr 21:193–230CrossRefGoogle Scholar
  273. Rees MD, Hawkins CL, Davies ML (2004) Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulfates. Biochem J 381:175–184CrossRefGoogle Scholar
  274. Reinheckel T, Ullrich O, Sitte N, Grune T (2000) Differential impairment of 20S and 26S proteasome activities in human hematopoietic K562 cells during oxidative stress. Arch Biochem Biophys 377(1):65–68CrossRefGoogle Scholar
  275. Ren LJ, Sun XM, Ji XJ, Chen SL, Guo DS, Huang H (2017) Enhancement of docosahexaenoic acid synthesis by manipulation of antioxidant capacity and prevention of oxidative damage in Schizochytrium sp. Bioresour Technol 223:141–148.  https://doi.org/10.1016/j.biortech.2016.10.040CrossRefGoogle Scholar
  276. Reyes LH, Gomez JM, Kao KC (2014) Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 21:26–33.  https://doi.org/10.1016/j.ymben.2013.11.002CrossRefGoogle Scholar
  277. Reynaert NL, van der Vliet A, Guala AS et al (2006) Dynamic redox control of NF-κB through glutaredoxin-regulated S-glutathionylation of inhibitory κB kinase β. Proc Natl Acad Sci U S A 103(35):13086–13091CrossRefGoogle Scholar
  278. Reyskens KMSE, Essop MF (2014) HIV protease inhibitors and onset of cardiovascular diseases: a central role for oxidative stress and dysregulation of the ubiquitin-proteasome system. Biochim Biophys Acta Mol Basis Dis 1842(2):256–268CrossRefGoogle Scholar
  279. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312(5782):1882–1883CrossRefGoogle Scholar
  280. Roberge S, Roussel J, Andersson DC et al (2014) TNF--mediated caspase-8 activation induces ROS production and TRPM2 activation in adult ventricular myocytes. Cardiovasc Res 103(1):90–99CrossRefGoogle Scholar
  281. Roe ND, He EY, Wu Z, Ren J (2013) Folic acid reverses nitric oxide synthase uncoupling and prevents cardiac dysfunction in insulin resistance: role of Ca2+/calmodulin-activated protein kinase II. Free Radic Biol Med 65:234–243CrossRefGoogle Scholar
  282. Sadek KM (2012) Antioxidant and immunostimulant effect of Carica papaya Linn. aqueous extract in acrylamide intoxicated rats. Acta Inf Med 20:180–185CrossRefGoogle Scholar
  283. Sag CM, Wolff HA, Neumann K et al (2013a) Ionizing radiation regulates cardiac Ca handling via increased ROS and activated CaMKII. Basic Res Cardiol 108(6), Article 385Google Scholar
  284. Sag CM, Wagner S, Maier LS (2013b) Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 63:338–349CrossRefGoogle Scholar
  285. Sajbidor J, Dobronova S, Certik M (1990) Arachidonic acid production by Mortierella Sp. S-17 influence of C/N ratio. Biotechnol Lett 12:455–456.  https://doi.org/10.1007/Bf01024404CrossRefGoogle Scholar
  286. Samanta K, Douglas S, Parekh AB (2014) Mitochondrial calcium uniporter MCU supports cytoplasmic Ca2+ oscillations, store-operated Ca2+ entry and Ca2+-dependent gene expression in response to receptor stimulation. PLoS ONE 9(7), Article ID e101188Google Scholar
  287. Sánchez G, Fernández C, Montecinos L, Domenech RJ, Donoso P (2011) Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart. Biochem Biophys Res Commun 410(4):916–921CrossRefGoogle Scholar
  288. Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, Luis A (2013) Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. In: del Río LA (ed) Peroxisomes and their key role in cellular signaling and metabolism. Springer, Dordrecht, pp. 231–255.  https://doi.org/10.1007/978-94-007-6889-5_13CrossRefGoogle Scholar
  289. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101CrossRefGoogle Scholar
  290. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687CrossRefGoogle Scholar
  291. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462.  https://doi.org/10.1016/j.cub.2014.03.034CrossRefGoogle Scholar
  292. Schieven GL, Mittler RS, Nadler SG, Kirihara JM, Bolen JB, Kanner SB, Ledbetter JA (1994) ZAP-70 tyrosine kinase, CD45, and T cell receptor involvement in UV-and H2O2-induced T cell signal transduction. J Biol Chem 269:20718–20726Google Scholar
  293. Schoonbroodt S, Ferreira V, Best-Belpomme M et al (2000) Crucial role of the amino-terminal tyrosine residue 42 and the carboxyl-terminal PEST domain of IB in NF-B activation by an oxidative stress. J Immunol 164(8):4292–4300CrossRefGoogle Scholar
  294. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911CrossRefGoogle Scholar
  295. Scott B, Eaton CJ (2008) Role of reactive oxygen species in fungal cellular differentiations. Curr Opin Microbiol 11:488–493.  https://doi.org/10.1016/j.mib.2008.10.008CrossRefGoogle Scholar
  296. Secrist JP, Burns LA, Karnitz L, Koretzky GA, Abraham RT (1993) Stimulatory effects of the protein tyrosine phosphatase inhibitor, pervanadate, on T-cell activation events. J Biol Chem 268:5886–5893Google Scholar
  297. Segref A, Kevei É, Pokrzywa W et al (2014) Pathogenesis of human mitochondrial diseases is modulated by reduced activity of the ubiquitin/proteasome system. Cell Metab 19(4):642–652CrossRefGoogle Scholar
  298. Sena LA, Chandel NS (2012a) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167CrossRefGoogle Scholar
  299. Sena LA, Chandel NS (2012b) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48(2):158–166CrossRefGoogle Scholar
  300. Sena LA, Li S, Jairaman A, Prakriya M, Ezponda T, Hildeman DA, Wang CR, Schumacker PT, Licht JD, Perlman H, Bryce PJ (2013) Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling. Immunity 38:225–236CrossRefGoogle Scholar
  301. Shang F, Taylor A (2011) Ubiquitin-proteasome pathway and cellular responses to oxidative stress. Free Radic Biol Med 51(1):5–16CrossRefGoogle Scholar
  302. Shih SCC, Mufti NS, Chamberlain MD, Kim J, Wheeler AR (2014) A droplet-based screen for wavelength-dependent lipid production in algae. Energy Environ Sci 7:2366–2375.  https://doi.org/10.1039/c4ee01123fCrossRefGoogle Scholar
  303. Shin I, Kim S, Song H, Kim H-RC, Moon A (2005) H-Rasspecific activation of Rac-MKK3/6-p38 pathway: its critical role in invasion and migration of breast epithelial cells. J Biol Chem 280(15):14675–14683CrossRefGoogle Scholar
  304. Shiratake T, Sato A, Minoda A, Tsuzuki M, Sato N (2013) Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a green alga, Chlorella kessleri. PLoS ONE 8:e79630.  https://doi.org/10.1371/journal.pone.0079630CrossRefGoogle Scholar
  305. Sickmann A, Reinders J, Wagner Y et al (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207–13212CrossRefGoogle Scholar
  306. Soneja A, Drews M, Malinski T (2005) Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol Rep 57:108–119Google Scholar
  307. Song Y-J, Kang M-S (2010) Roles of TRAF2 and TRAF3 in Epstein-Barr virus latent membrane protein 1-induced alternative NF-κB activation. Virus Gene 41(2):174–180CrossRefGoogle Scholar
  308. Sproul EP, Argraves WS (2013) A cytokine axis regulates elastin formation and degradation. Matrix Biol 32(2):86–94CrossRefGoogle Scholar
  309. Stadler WM (2005) Targeted agents for the treatment of advanced renal cell carcinoma. Cancer 104(11):2323–2333CrossRefGoogle Scholar
  310. Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52.  https://doi.org/10.1196/annals.1427.015CrossRefGoogle Scholar
  311. Stathopulos PB, Ikura M (2010) Partial unfolding and oligomerization of stromal interaction molecules as an initiation mechanism of store operated calcium entry. Biochem Cell Biol 88(2):175–183CrossRefGoogle Scholar
  312. Steenvoorden MM, van der Helm-van Mil AH, Stoeken G, Bank RA, DeVries RR, Huizinga TW, Degroot J, Toes RE (2006) The RAGE G82S polymorphism is not associated with rheumatoid arthritis independently of HLA-DRB1* 0401. Rheumatology 45:488–490CrossRefGoogle Scholar
  313. Storz P, Toker A (2003) Protein kinase D mediates a stress induced NF-B activation and survival pathway. EMBO J 22(1):109–120CrossRefGoogle Scholar
  314. Storz P, Döppler H, Toker A (2004) Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor B. Mol Pharmacol 66(4):870–879CrossRefGoogle Scholar
  315. Strollo R, Ponchel F, Malmström V, Rizzo P, Bombardieri M, Wenham CY, Landy R, Perret D, Watt F, Corrigall VM, Winyard PG (2013) Autoantibodies to post-translationally modified type II collagen as potential biomarkers for rheumatoid arthritis. Arthritis Rheum 65:1702–1712CrossRefGoogle Scholar
  316. Sundaresan M, Yu ZX, Ferrans VJ, Irani K, Finkel T (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299CrossRefGoogle Scholar
  317. Suzuki YJ, Ford GD (1992) Superoxide stimulates IP3-induced Ca2+ release from vascular smooth muscle sarcoplasmic reticulum. Am J Physiol Heart Circ Physiol 262:H114–H116CrossRefGoogle Scholar
  318. Taguchi K, Motohashi H, Yamamoto M (2011) Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16(2):123–140CrossRefGoogle Scholar
  319. Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB (2003) Hydrogen peroxide activates NF-κB through tyrosine phosphorylation of IκBα and serine phosphorylation of p65 evidence for the involvement of IκBα kinase and Syk protein-tyrosine kinase. J Biol Chem 278(26):24233–24241CrossRefGoogle Scholar
  320. Takahashi T, Katsuta S, Tamura Y, Nagase N, Suzuki K, Nomura M, Tomatsu S, Miyamoto KI, Kobayashi S (2013) Bone-targeting endogenous secretory receptor for advanced glycation end products rescues rheumatoid arthritis. Mol Med 19:183–194CrossRefGoogle Scholar
  321. Tang Y, Forsyth CB, Farhadi A, Rangan J, Jakate S, Shaikh M, Banan A, Fields JZ, Keshavarzian A (2009) Nitric oxide-mediated intestinal injury is required for alcohol-induced gut leakiness and liver damage. Alcohol Clin Exp Res 33:1220–1230CrossRefGoogle Scholar
  322. Tang X, Zan XY, Zhao LN, Chen HQ, Chen YQ, Chen W et al (2016) Proteomics analysis of high lipid-producing strain Mucor circinelloides WJ11: an explanation for the mechanism of lipid accumulation at the proteomic level. Microb Cell Fact 15:35.  https://doi.org/10.1186/s12934-016-0428-4CrossRefGoogle Scholar
  323. Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP (2013) PKA: Lessons learned after twenty years. Biochim Biophys Acta Proteins Proteomics 1834(7):1271–1278CrossRefGoogle Scholar
  324. Thompson JW, Narayanan SV, Perez-Pinzon MA (2012) Redox signaling pathways involved in neuronal ischemic preconditioning. Curr Neuropharmacol 10(4):354–369CrossRefGoogle Scholar
  325. Thompson MD, Mei Y, Weisbrod RM et al (2014) Glutathione adducts on sarcoplasmic/endoplasmic reticulum Ca2+ ATPase Cys-674 regulate endothelial cell calcium stores and angiogenic function as well as promote ischemic blood flow recovery. J Biol Chem 289(29):19907–19916CrossRefGoogle Scholar
  326. Tian H, Zhang B, Di J et al (2012) Keap1: one stone kills three birds Nrf 2, IKK and Bcl-2/Bcl xL. Cancer Lett 325(1):26–34CrossRefGoogle Scholar
  327. Tiku ML, Shah R, Allison GT (2000) Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 275:20069–20076CrossRefGoogle Scholar
  328. Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B (1997) Mediation by arachidonic acid metabolites of the H2O2-Induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-jun NH2-terminal kinase). Eur J Biochem 244:587–595CrossRefGoogle Scholar
  329. Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840CrossRefGoogle Scholar
  330. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552(part 2):335–344CrossRefGoogle Scholar
  331. Urbano SB, Di Capua C, Cortez N, Farias ME, Alvarez HM (2014) Triacylglycerol accumulation and oxidative stress in Rhodococcus species: differential effects of pro-oxidants on lipid metabolism. Extremophiles 18:375–384.  https://doi.org/10.1007/s00792-013-0623-8CrossRefGoogle Scholar
  332. Uzma N, Kumar BS, Hazari MAH (2010) Exposure to benzene induces oxidative stress, alters the immune response and expression of p53 in gasoline filling workers. Am J Ind Med 53:1264–1270CrossRefGoogle Scholar
  333. Veal EA, Day AM, Morgan BA (2007) Hydrogen peroxide sensing and signaling. Mol Cell 26:1–14.  https://doi.org/10.1016/j.molcel.2007.03.016CrossRefGoogle Scholar
  334. Veselinovic M, Barudzic N, Vuletic M et al (2014) Oxidative stress in rheumatoid arthritis patients: relationship to diseases activity. Mol Cell Biochem 391:225–232CrossRefGoogle Scholar
  335. Villeneuve NF, Lau A, Zhang DD (2010) Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13(11):1699–1712CrossRefGoogle Scholar
  336. Vitova M, Bisova K, Kawano S, Zachleder V (2015) Accumulation of energy reserves in algae: from cell cycles to biotechnological applications. Biotechnol Adv 33:1204–1218.  https://doi.org/10.1016/j.biotechadv.2015.04.012CrossRefGoogle Scholar
  337. Voronina S, Okeke E, Parker T, Tepikin A (2014) How to win ATP and influence Ca2+ signaling. Cell Calcium 55(3):131–138CrossRefGoogle Scholar
  338. Voutsadakis IA (2012) The ubiquitin-proteasome system and signal transduction pathways regulating Epithelial Mesenchymal transition of cancer. J Biomed Sci 19(1), article 67CrossRefGoogle Scholar
  339. Wagner S, Rokita AG, Anderson ME, Maier LS (2013) Redox regulation of sodium and calcium handling. Antioxid Redox Signal 18(9):1063–1077CrossRefGoogle Scholar
  340. Wang QJ (2006) PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 27(6):317–323CrossRefGoogle Scholar
  341. Wang L, Azad N, Kongkaneramit L, Chen F, Lu Y, Jiang BH, Rojanasakul Y (2008) The Fas death signaling pathway connecting reactive oxygen species generation and FLICE inhibitory protein down-regulation. J Immunol 180:3072–3080CrossRefGoogle Scholar
  342. Wang Z, Li Y, Sarkar FH (2010) Signaling mechanism (s) of reactive oxygen species in Epithelial-Mesenchymal Transition reminiscent of cancer stem cells in tumor progression. Curr Stem Cell Res Ther 5:74–80CrossRefGoogle Scholar
  343. Warnatsch A, Bergann T, Krüger E (2013) Oxidation matters: the ubiquitin proteasome system connects innate immune mechanisms with MHC class I antigen presentation. Mol Immunol 55(2):106–109CrossRefGoogle Scholar
  344. Wasylenko TM, Ahn WS, Stephanopoulos G (2015) The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metab Eng 30:27–39.  https://doi.org/10.1016/j.ymben.2015.02.007CrossRefGoogle Scholar
  345. Welman A, Griffiths JR, Whetton AD, Dive C (2007) Protein kinase C delta is phosphorylated on five novel Ser/Thr sites following inducible overexpression in human colorectal cancer cells. Protein Sci 16(12):2711–2715CrossRefGoogle Scholar
  346. Wentworth CC, Alam A, Jones RM, Nusrat A, Neish AS (2011) Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3. J Biol Chem 286(44):38448–38455CrossRefGoogle Scholar
  347. Whisler RL, Goyette MA, Grants IS, Newhouse YG (1995) Sublethal levels of oxidant stress stimulate multiple serine/threonine kinases and suppress protein phosphatases in Jurkat T cells. Arch Biochem Biophys 319:23–35CrossRefGoogle Scholar
  348. Whittle SL, Hughes RA (2004) Folate supplementation and methotrexate treatment in rheumatoid arthritis: a review. Rheumatology 43:267–271CrossRefGoogle Scholar
  349. Wiemann B, Starnes CO (1994) Coley’s toxins, tumor necrosis factor and cancer research: a historical perspective. Pharmacol Ther 64:529–564CrossRefGoogle Scholar
  350. Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286CrossRefGoogle Scholar
  351. Winyard PG, Tatzber F, Esterbauer H, Kus ML, Blake DR, Morris CJ (1993) Presence of foam cells containing oxidised low density lipoprotein in the synovial membrane from patients with rheumatoid arthritis. Ann Rheum Dis 52:677–680CrossRefGoogle Scholar
  352. Witschi H (2005) Carcinogenic activity of cigarette smoke gas phase and its modulation by beta carotene and N-acetylcysteine. Toxicol Sci 84:81–87CrossRefGoogle Scholar
  353. Wu X, Bishopric NH, Discher DJ, Murphy BJ, Webster KA (1996) Physical and functional sensitivity of zinc finger transcription factors to redox change. Mol Cell Biol 16:1035–1046CrossRefGoogle Scholar
  354. Xanthoudakis S, Curran T (1993) Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J 11:653–665CrossRefGoogle Scholar
  355. Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci U S A 94:514–519CrossRefGoogle Scholar
  356. Yamanishi Y, Boyle DL, Rosengren S, Green DR, Zvaifler NJ, Firestein GS (2002) Regional analysis of p53 mutations in rheumatoid arthritis synovium. Proc Natl Acad Sci USA 99:10025–10030CrossRefGoogle Scholar
  357. Yang SR, Valvo S, Yao H, Kode A, Rajendrasozhan S, Edirisinghe I, Caito S, Adenuga D, Henry R, Fromm G, Maggirwar S (2008) IKKα causes chromatin modification on pro-inflammatory genes by cigarette smoke in mouse lung. Am J Respir Cell Mol Biol 38:689–698CrossRefGoogle Scholar
  358. Yang ZK, Niu YF, Ma YH, Xue J, Zhang MH, Yang WD et al (2013) Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol Biofuels 6:67.  https://doi.org/10.1186/1754-6834-6-67CrossRefGoogle Scholar
  359. Yang ZK, Ma YH, Zheng JW, Yang WD, Liu JS, Li HY (2014) Proteomics to reveal metabolic network shifts towards lipid accumulation following nitrogen deprivation in the diatom Phaeodactylum tricornutum. J Appl Phycol 26:73–82.  https://doi.org/10.1007/s10811-013-0050-3CrossRefGoogle Scholar
  360. Yilancioglu K, Cokol M, Pastirmaci I, Erman B, Cetiner S (2014) Oxidative stress is a mediator for increased lipid accumulation in a newly isolated Dunaliella salina strain. PLoS ONE 9:e91957.  https://doi.org/10.1371/journal.pone.0091957CrossRefGoogle Scholar
  361. Yip WK, Seow HF (2012) Activation of phosphatidylinositol 3-kinase/Akt signaling by EGF downregulates membranous Ecadherin and -catenin and enhances invasion in nasopharyngeal carcinoma cells. Cancer Lett 318(2):162–172CrossRefGoogle Scholar
  362. Yoo SA, Park JH, Hwang SH, Oh SM, Lee S, Cicatiello V, Rho S, De Falco S, Hwang D, Cho CS, Kim WU (2015) Placental growth factor-1 and-2 induce hyperplasia and invasiveness of primary rheumatoid synoviocytes. J Immunol 194:2513–2521CrossRefGoogle Scholar
  363. Yoo SJ, Go E, Kim YE, Lee S, Kwon J (2016) Roles of reactive oxygen species in rheumatoid arthritis pathogenesis. J Rheum Dis 23:340–347CrossRefGoogle Scholar
  364. Yu W, Dittenhafer-Reed KE, Denu JM (2012) SIRT3 protein deacetylates isocitrate dehydrogenase 2(IDH2) and regulates mitochondrial redox status. J Biol Chem 287:14078–14086CrossRefGoogle Scholar
  365. Yu QL, Liu Z, Xu HM, Zhang B, Zhang M, Li MC (2015) TiO2 nanoparticles promote the production of unsaturated fatty acids (UFAs) fighting against oxidative stress in Pichia pastoris. RSC Adv 5:41033–41040.  https://doi.org/10.1039/c5ra02366aCrossRefGoogle Scholar
  366. Yu YD, Li T, Wu N, Ren LJ, Jiang L, Ji XJ et al (2016) Mechanism of arachidonic acid accumulation during aging in Mortierella alpina: a large-scale label-free comparative proteomics study. J Agric Food Chem 64:9124–9134.  https://doi.org/10.1021/acs.jafc.6b03284CrossRefGoogle Scholar
  367. Yurchak LK, Hardwick JS, Amrein K, Pierno K, Sefton BM (1996) Stimulation of phosphorylation of Tyr394 by hydrogen peroxide reactivates biologically inactive, non-membrane bound forms of Lck. J Biol Chem 271:12549–12554CrossRefGoogle Scholar
  368. Zafari AM, Ushio-Fukai M, Akers M, Yin Q, Shah A, Harrison DG, Taylor WR, Griendling KK (1998) Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II–induced vascular hypertrophy. Hypertension 32:488–495CrossRefGoogle Scholar
  369. Zhang JM, An J (2007) Cytokines, inflammation and pain. Int Anesthesiol Clin 45:27–37.  https://doi.org/10.1097/AIA.0b013e318034194eCrossRefGoogle Scholar
  370. Zhang Y, Gan B, Liu D, Paik J-H (2011) FoxO family members in cancer. Cancer Biol Ther 12(4):253–259CrossRefGoogle Scholar
  371. Zhang H, Gomez AM, Wang X, Yan Y, Zheng M, Cheng H (2013) ROS regulation of microdomain Ca2+ signalling at the dyads. Cardiovasc Res 98(2):248–258CrossRefGoogle Scholar
  372. Zhang XS, Zhang X, Wu Q, Li W, Zhang QR, Wang CW, Zhou XM, Li H, Shi JX, Zhou ML (2014) Astaxanthin alleviates early brain injury following subarachnoid hemorrhage in rats: possible involvement of Akt/bad signaling. Mar Drugs 12:4291–4310CrossRefGoogle Scholar
  373. Zhang J, Wang XL, Vikash V, Ye Q, Wu DD, Liu YL et al (2016a) ROS and ROS-mediated cellular signaling. Oxidative Med Cell Longevity 2016:4350965.  https://doi.org/10.1155/2016/4350965CrossRefGoogle Scholar
  374. Zhang Z, Sun DZ, Mao XM, Liu J, Chen F (2016b) The crosstalk between astaxanthin, fatty acids and reactive oxygen species in heterotrophic Chlorella zofingiensis. Algal Res 19:178–183.  https://doi.org/10.1016/j.algal.2016.08.015CrossRefGoogle Scholar
  375. Zheng S, Zhong ZM, Qin S, Chen GX, Wu Q, Zeng JH, Ye WB, Li W, Yuan K, Yao L, Chen JT (2013) Advanced oxidation protein products induce inflammatory response in fibroblast-like synoviocytes through NADPH oxidase-dependent activation of NF-κB. Cell Physiol Biochem 32:972–985CrossRefGoogle Scholar
  376. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324.  https://doi.org/10.1016/j.cell.2016.08.029CrossRefGoogle Scholar
  377. Zhu LD, Li ZH, Hiltunen E (2016) Strategies for lipid production improvement in microalgae as a biodiesel feedstock. Biomed Res Int 2016:8792548.  https://doi.org/10.1155/2016/8792548CrossRefGoogle Scholar
  378. Zienkiewicz K, Du ZY, Ma W, Vollheyde K, Benning C (2016) Stressinduced neutral lipid biosynthesis in microalgae—molecular, cellular and physiological insights. Biochim Biophys Acta 1861:1269–1281.  https://doi.org/10.1016/j.bbalip.2016.02.008CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations