The Roles and Mechanisms of ROS, Oxidative Stress, and Oxidative Damage

  • Loutfy H. MadkourEmail author
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)


Ratio between oxidized and reduced glutathione (2GSH/GSSG) is one of the important determinants of oxidative stress in the body. Oxidative stress occurs when the balance between antioxidants and ROS are disrupted. An oxidative stress condition is generated when a cell accumulates an excessive concentration of ROS. As a passive effect, ROS can be detrimental to cells due to oxidative damage to lipids, proteins, and DNA. All ROS are extremely harmful to organisms at high concentrations causing peroxidation of lipids, oxidation of proteins, and damage to nucleic acids, enzyme inhibition, activation of programmed cell death (PCD) pathway, and ultimately leading to death of the cells. Oxidative stress is considered causal of aging and pathological cell death, however, very little is known about its function in the natural processes that support the formation of an organism. It is generally thought that cells must continuously protect themselves from the possible damage caused by reactive oxygen species (ROS) (passive ROS function). However, presently, ROS are recognized as physiologically relevant molecules that mediate cell responses to a variety of stimuli, and the activities of several molecules, some developmentally relevant, are directly or indirectly regulated by oxidative stress (active ROS function). In general, we describe the possible active roles of ROS during development.


Oxidative stress ROS regulation Cellular processes Oxidative damage Autophagy Nucleic acids 


  1. Allen RG, Tresini M (2000) Oxidative stress and gene regulation. Free Radic Biol Med 28:463–499CrossRefGoogle Scholar
  2. Andreadis AA, Hazen SL, Comhair SA, Erzurum SC (2003) Oxidative and nitrosative events in asthma. Free Radic Biol Med 35:213–225CrossRefGoogle Scholar
  3. Andriopoulos NA, Mestecky J, Miller EJ, Bradley EL (1976) Antibodies to native and denatured collagens in sera of patients with rheumatoid arthritis. Arthritis Rheum 19(3):613–617CrossRefGoogle Scholar
  4. Aruoma OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75:199–212CrossRefGoogle Scholar
  5. Asami S, Manabe H, Miyake J, Tsurudome Y, Hirano T et al (1997) Cigarette smoking induces an increase in oxidative DNA damage, 8-hydroxydeoxyguanosine, in a central site of the human lung. Carcinogenesis 18:1763–1766CrossRefGoogle Scholar
  6. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-kappa B activity through induction of I kappa B synthesis. Science 270(5234):286–290CrossRefGoogle Scholar
  7. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Dimenna FJ, Wilkerson DP, Tarr J, Benjamin N, Jones AM (2009) Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans. J Appl Physiol 107(4):1144–1155CrossRefGoogle Scholar
  8. Bar-Shai M, Reznick AZ (2006) Reactive nitrogen species induce nuclear factor-κB-mediated protein degradation in skeletal muscle cells. Free Radic Biol Med 40:2112–2125CrossRefGoogle Scholar
  9. Bartesaghi S, Ferrer-Sueta G, Peluffo G, Valez V, Zhang H, Kalyanaraman B, Radi R (2007) Protein tyrosine nitration in hydrophilic and hydrophobic environments. Amino Acids 32(4):501–515CrossRefGoogle Scholar
  10. Basu S, Azarova NA, Font MD, King SB, Hogg N, Gladwin MT, Shiva S, Kim-Shapiro DB (2008) Nitrite reductase activity of cytochrome c. J Biol Chem 283(47):32590–32597CrossRefGoogle Scholar
  11. Bauerova K, Bezek A (1999) Role of reactive oxygen and nitrogen species in etiopathogenesis of rheumatoid arthritis. Gen Physiol Biophys 18:15–20Google Scholar
  12. Belmont HM, Levartovsky D, Goel A, Amin A, Giorno R, Rediske J, Skovron ML, Abramson SB (1997) increased nitric oxide production accompanied by the up-regulation of inducible nitric oxide synthase in vascular endothelium from patients with systemic lupus erythematosus. Arthritis Rheum 40(10):1810–1816CrossRefGoogle Scholar
  13. Ben Mahdi MH et al (2000) Focal adhesion kinase regulation by oxidative stress in different cell types. IUBMB Life 50:291–299CrossRefGoogle Scholar
  14. Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, McKenzie H (1994) Stomach NO synthesis. Nature 368(6471):502CrossRefGoogle Scholar
  15. Bergmann A et al (1996) A gradient of cytoplasmic Cactus degradation establishes the nuclear localization gradient of the dorsal morphogen in Drosophila. Mech Dev 60:109–123CrossRefGoogle Scholar
  16. Blake DR, Winyard PG, Marok R (1994) The contribution of hypoxia-reperfusion injury to inflammatory synovitis: the influence of reactive oxygen intermediates on the transcriptional control of inflammation. Ann N Y Acad Sci 723:308–317CrossRefGoogle Scholar
  17. Bonaventura A, Liberale L, Carbone F, Vecchie A, Diaz-Canestro C, Camici GG, Montecucco F, Dallegri F (2018) The pathophysiological role of neutrophil extracellular traps in inflammatory diseases. Thromb Haemost 118(1):6–27CrossRefGoogle Scholar
  18. Bras M et al (2005) Programmed cell death via mitochondria: different modes of dying. Biochemistry (Moscow) 70:231–239CrossRefGoogle Scholar
  19. Breen AP, Murphy JA (1995) Reactions of oxyl radicals with DNA. Free Radic Biol Med 18:1033–1077CrossRefGoogle Scholar
  20. Brown MR et al (1999) Overexpression of human catalase inhibits proliferation and promotes apoptosis in vascular smooth muscle cells. Circ Res 85:524–533CrossRefGoogle Scholar
  21. Burcham PC (1999) Internal hazards: Baseline DNA damage by endogenous products of normal metabolism. Mutat Res 443:11–36CrossRefGoogle Scholar
  22. Burdon RH, Rice-Evans C (1989) Free radicals and the regulation of mammalian cell proliferation. Free Radic Res Commun 6:345–358CrossRefGoogle Scholar
  23. Burkhardt H, Sehnert B, Bockermann R, Engstrom A, Kalden JR, Holmdahl R (2005) Humoral immune response to citrullinated collagen type II determinants in early rheumatoid arthritis. Eur J Immunol 35(5):1643–1652CrossRefGoogle Scholar
  24. Bushdid PB et al (1998) Inhibition of NF-kappaB activity results in disruption of the apical ectodermal ridge and aberrant limb morphogenesis. Nature 392:615–618CrossRefGoogle Scholar
  25. Cadet J, Delatour T, Douki T, Gasparutto D, Pouget JP, Ravanat JL et al (1999) Hydroxyl radicals and DNA base damage. Mutat Res 424:9–21CrossRefGoogle Scholar
  26. Caldecott KW (2003) Protein-protein interactions during mammalian DNA single-strand break repair. Biochem Soc Trans 31:247–251CrossRefGoogle Scholar
  27. Cao X et al (2002) Oxidoreductive modification of two cysteine residues in paired domain by Ref-1 regulates DNA-binding activity of Pax-8. Biochem Biophys Res Commun 297:288–293CrossRefGoogle Scholar
  28. Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125:2115–2125CrossRefGoogle Scholar
  29. Carriere A et al (2004) Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation: a mechanism for hypoxiadependent effect. J Biol Chem 279:40462–40469CrossRefGoogle Scholar
  30. Cay HF, Sezer I, Dogan S, Felek R, Aslan M (2012) Polymorphism in the TNF-alpha gene promoter at position -1031 is associated with increased circulating levels of TNF-alpha, myeloperoxidase and nitrotyrosine in primary Sjogren’s syndrome. Clin Exp Rheumatol 30(6):843–849Google Scholar
  31. Cejkova J, Ardan T, Simonova Z, Cejka C, Malec J, Jirsova K, Filipec M, Dotrelova D, Brunova B (2007) Nitric oxide synthase induction and cytotoxic nitrogen-related oxidant formation in conjunctival epithelium of dry eye (Sjogren’s syndrome). Nitric Oxide Biol Chem 17(1):10–17CrossRefGoogle Scholar
  32. Chance B, Sies H, Boveris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59:527–605CrossRefGoogle Scholar
  33. Chapman AL, Hampton MB, Senthilmohan R, Winterbourn CC, Kettle AJ (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277(12):9757–9762CrossRefGoogle Scholar
  34. Chen XL et al (2004) Superoxide, H2O2, and iron are required for TNF-alpha-induced MCP-1 gene expression in endothelial cells: role of Rac1 and NADPH oxidase. Am J Physiol Heart Circ Physiol 286:H1001–H1007CrossRefGoogle Scholar
  35. Chen CC et al (2007) Cytotoxicity of TNFalpha is regulated by integrin-mediated matrix signaling. EMBO J 26:1257–1267CrossRefGoogle Scholar
  36. Chen Y, Azad MB, Gibson SB (2009) Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16:1040–1052CrossRefGoogle Scholar
  37. Chen Q, Zhang M, Shen S (2010) Effect of salt on malondialdehyde and antioxidant enzymes in seedling roots of Jerusalem artichoke (Helianthus tuberosus L.). Acta Physiol Plant 33(2):273–278CrossRefGoogle Scholar
  38. Cheng G et al (2006) Nox1-dependent reactive oxygen generation is regulated by Rac1. J Biol Chem 281:17718–17726CrossRefGoogle Scholar
  39. Cho YM et al (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478CrossRefGoogle Scholar
  40. Choi MH et al (2005) Regulation of PDGF signalling and vascular remodelling by peroxiredoxin II. Nature 435:347–353CrossRefGoogle Scholar
  41. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480CrossRefGoogle Scholar
  42. Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA et al (2005a) Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med 172:306–313CrossRefGoogle Scholar
  43. Comhair SA, Xu W, Ghosh S, Thunnissen FB, Almasan A et al (2005b) Superoxide dismutase inactivation in pathophysiology of asthmatic airway remodeling and reactivity. Am J Pathol 166:663–674CrossRefGoogle Scholar
  44. Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214CrossRefGoogle Scholar
  45. Correa RG et al (2004) Characterization of NF-kappa B/I kappa B proteins in zebra fish and their involvement in notochord development. Mol Cell Biol 24:5257–5268CrossRefGoogle Scholar
  46. Cosby K, Partovi KS, Crawford JH, Patel RP, Reiter CD, Martyr S, Yang BK, Waclawiw MA, Zalos G, Xu X, Huang KT, Shields H, Kim-Shapiro DB, Schechter AN, Cannon RO 3rd, Gladwin MT (2003) Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med 9(12):1498–1505CrossRefGoogle Scholar
  47. Cross JV, Templeton DJ (2004) Oxidative stress inhibits MEKK1 by site-specific glutathionylation in the ATP-binding domain. Biochem J 381:675–683CrossRefGoogle Scholar
  48. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta Int J Clin Chem 329(1–2):23–38CrossRefGoogle Scholar
  49. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623CrossRefGoogle Scholar
  50. Dalton TP et al (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101CrossRefGoogle Scholar
  51. David SS, O’Shea VL, Kundu S (2007) Base-excision repair of oxidative DNA damage. Nature 447:941–950CrossRefGoogle Scholar
  52. Davies KJ (1987) Protein damage and degradation by oxygen radicals. I. General aspects. J Biol Chem 262:9895–9901Google Scholar
  53. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47CrossRefGoogle Scholar
  54. Dean RT, Roberts CR, Jessup W (1985) Fragmentation of extracellular and intracellular polypeptides by free radicals. Prog Clin Biol Res 180:341–350Google Scholar
  55. Dean RT, Fu S, Stocker R, Davies MJ (1997) Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 324(Pt 1):1–18CrossRefGoogle Scholar
  56. Deshpande SS et al (2000) Rac1 inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASEB J 14:1705–1714CrossRefGoogle Scholar
  57. Desideri E, Filomeni G, Ciriolo MR (2012) Glutathione participates in the modulation of starvation-induced autophagy in carcinoma cells. Autophagy 8:1769–1781CrossRefGoogle Scholar
  58. Desikan R, Mackerness SA-H, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127(1):159–172CrossRefGoogle Scholar
  59. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673CrossRefGoogle Scholar
  60. Dizdaroglu M (1993) Chemistry of free radical damage to DNA and nucleoproteins. In: Halliwell B, Aruoma OI (eds) DNA and free radicals. Ellis Horwood, London, pp 19–39Google Scholar
  61. Djavaheri-Mergny M et al (2004) NF-kappaB activation prevents apoptotic oxidative stress via an increase of both thioredoxin and MnSOD levels in TNFalpha-treated Ewing sarcoma cells. FEBS Lett 578:111–115CrossRefGoogle Scholar
  62. Dobritzsch D, Lindh I, Uysal H, Nandakumar KS, Burkhardt H, Schneider G, Holmdahl R (2011) Crystal structure of an arthritogenic anticollagen immune complex. Arthritis Rheum 63(12):3740–3748CrossRefGoogle Scholar
  63. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefGoogle Scholar
  64. Durackova Z (2010) Some current insights into oxidative stress. Physiol Res 59(4):459–469Google Scholar
  65. Dut R, Dizdar EA, Birben E, Sackesen C, Soyer OU, Besler T, Kalayci O (2008) Oxidative stress and its determinants in the airways of children with asthma. Allergy 63:1605–1609CrossRefGoogle Scholar
  66. Egea J, Fabregat I, Frapart YM, Ghezzi P, Gorlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, Petry A, Schulz R, Vina J, Winyard P, Abbas K, Ademowo OS, Afonso CB, Andreadou I, Antelmann H, Antunes F, Aslan M, Bachschmid MM, Barbosa RM, Belousov V, Berndt C, Bernlohr D, Bertran E, Bindoli A, Bottari SP, Brito PM, Carrara G, Casas AI, Chatzi A, Chondrogianni N, Conrad M, Cooke MS, Costa JG, Cuadrado A, My-Chan Dang P, De Smet B, Debelec-Butuner B, Dias IHK, Dunn JD, Edson AJ, El Assar M, El-Benna J, Ferdinandy P, Fernandes AS, Fladmark KE, Forstermann U, Giniatullin R, Giricz Z, Gorbe A, Griffiths H, Hampl V, Hanf A, Herget J, Hernansanz-Agustin P, Hillion M, Huang J, Ilikay S, Jansen-Durr P, Jaquet V, Joles JA, Kalyanaraman B, Kaminskyy D, Karbaschi M, Kleanthous M, Klotz LO, Korac B, Korkmaz KS, Koziel R, Kracun D, Krause KH, Kren V, Krieg T, Laranjinha J, Lazou A, Li H, Martinez-Ruiz A, Matsui R, McBean GJ, Meredith SP, Messens J, Miguel V, Mikhed Y, Milisav I, Milkovic L, Miranda-Vizuete A, Mojovic M, Monsalve M, Mouthuy PA, Mulvey J, Munzel T, Muzykantov V, Nguyen ITN, Oelze M, Oliveira NG, Palmeira CM, Papaevgeniou N, Pavicevic A, Pedre B, Peyrot F, Phylactides M, Pircalabioru GG, Pitt AR, Poulsen HE, Prieto I, Rigobello MP, Robledinos-Anton N, Rodriguez-Manas L, Rolo AP, Rousset F, Ruskovska T, Saraiva N, Sasson S, Schroder K, Semen K, Seredenina T, Shakirzyanova A, Smith GL, Soldati T, Sousa BC, Spickett CM, Stancic A, Stasia MJ, Steinbrenner H, Stepanic V, Steven S, Tokatlidis K, Tuncay E, Turan B, Ursini F, Vacek J, Vajnerova O, Valentova K, Van Breusegem F, Varisli L, Veal EA, Yalcin AS, Yelisyeyeva O, Zarkovic N, Zatloukalova M, Zielonka J, Touyz RM, Papapetropoulos A, Grune T, Lamas S, Schmidt H, Di Lisa F, Daiber A (2017) European contribution to the study of ROS: a summary of the findings and prospects for the future from the cost action BM1203 (EU-ROS). Redox Biol 13:94–162Google Scholar
  67. Eggleton P, Haigh R, Winyard PG (2008) Consequence of neo-antigenicity of the ‘altered self’. Rheumatology 47(5):567–571CrossRefGoogle Scholar
  68. Eggleton P, Nissim A, Ryan BJ, Whiteman M, Winyard PG (2013) Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 57:79–91CrossRefGoogle Scholar
  69. Ercan H, Birben E, Dizdar EA, Keskin O, Karaaslan C et al (2006) Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J Allergy Clin Immunol 118:1097–1104CrossRefGoogle Scholar
  70. Evans CH, Stefanovic-Racic M (1996) Nitric oxide in arthritis. Methods 10(1):38–42CrossRefGoogle Scholar
  71. Evans CH, Stefanovic-Racic M (2000) Nitric oxide and inflammatory joint diseases. In: Winyard PG, Blake DR, Evans CH (eds) Free radicals and inflammation. Birkhäuser Basel, Basel, pp 155–168CrossRefGoogle Scholar
  72. Evans AR et al (2000) Going APE over ref-1. Mutat Res 461:83–108CrossRefGoogle Scholar
  73. Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567(1):1–61CrossRefGoogle Scholar
  74. Faize M, Burgos L, Faize L et al (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62(8):2599–2613CrossRefGoogle Scholar
  75. Filippin LI, Vercelino R, Marroni N, Xavier RM (2008) Redox signalling and the inflammatory response in rheumatoid arthritis. Clin Exp Immunol 152:415–422CrossRefGoogle Scholar
  76. Filomeni G, Rotilio G, Ciriolo MR (2002) Cell signalling and the glutathione redox system. Biochem Pharmacol 64:1057–1064CrossRefGoogle Scholar
  77. Filomeni G, Rotilio G, Ciriolo MR (2005) Disulfide relays and phosphorylative cascades: partners in redox-mediated signaling pathways. Cell Death Differ 12:1555–1563CrossRefGoogle Scholar
  78. Filomeni G, Desideri E, Cardaci S, Rotilio G, Ciriolo MR (2016) Under the ROS. Thiol network is the principal suspect for autophagy commitment. Autophagy 6:999–1005CrossRefGoogle Scholar
  79. Fitzpatrick AM, Teague WG, Holguin F, Yeh M, Brown LA (2002) Severe Asthma Research Program. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol 123:146–152CrossRefGoogle Scholar
  80. Fleury C et al (2002) Mitochondrial reactive oxygen species in cell death signaling. Biochimie 84:131–141CrossRefGoogle Scholar
  81. Flora SJS, Mittal M, Mehta A (2008) Heavy metal induced oxidative stress & its possible reversal by chelation therapy. Indian J Med Res 128:501–523Google Scholar
  82. Foyer CH, Noctor G (2016) Stress-triggered redox signalling: what’s in pROSpect? Plant Cell Environ 39:951–964CrossRefGoogle Scholar
  83. Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, Knight AR, Taylor EL, Oettrich J, Ruskovska T, Gasparovic AC, Cuadrado A, Weber D, Poulsen HE, Grune T, Schmidt HHHW, Ghezzi P (2015) Clinical relevance of biomarkers of oxidative stress. Antioxid Redox Signal 23(14):1144–1170CrossRefGoogle Scholar
  84. Fucci L, Oliver CN, Coon MJ, Stadtman ER (1983) Inactivation of key metabolic enzymes by mixed-function oxidation reactions: possible implication in protein turnover and ageing. Proc Natl Acad Sci U S A 80:1521–1525CrossRefGoogle Scholar
  85. Funato Y et al (2006) The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-beta-catenin signalling through Dishevelled. Nat Cell Biol 8:501–508CrossRefGoogle Scholar
  86. Galang CK, Hauser CA (1993) Cooperative DNA binding of the human HoxB5 (Hox-2.1) protein is under redox regulation in vitro. Mol Cell Biol 13:4609–4617CrossRefGoogle Scholar
  87. García-Niño WR, Pedraza-Chaverrí J (2014) Protective effect of curcumin against heavy metals-induced liver damage. Food Chem Toxicol 69:182–201CrossRefGoogle Scholar
  88. Gardner PR, Fridovich I (1991) Superoxide sensitivity of the Escherichia coli 6-phosphogluconate dehydratase. J Biol Chem 266(3):1478–1483Google Scholar
  89. Gehring WJ et al (1994) Homeodomain proteins. Annu Rev Biochem 63:487–526CrossRefGoogle Scholar
  90. Gergely P Jr, Grossman C, Niland B, Puskas F, Neupane H, Allam F, Banki K, Phillips PE, Perl A (2002) Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 46(1):175–190CrossRefGoogle Scholar
  91. Ghezzi P (2005) Oxidoreduction of protein thiols in redox regulation. Biochem Soc Trans 33:1378–1381CrossRefGoogle Scholar
  92. Ghosh R, Mitchell DL (1999) Effect of oxidative DNA damage in promoter elements on transcription factor binding. Nucleic Acids Res 27:3213–3218CrossRefGoogle Scholar
  93. Giannoni E et al (2005) Intracellular reactive oxygen species activate Src tyrosine kinase during cell adhesion and anchorage-dependent cell growth. Mol Cell Biol 25:6391–6403CrossRefGoogle Scholar
  94. Giles NM, Gutowski NJ, Giles GI, Jacob C (2003) Redox catalysts as sensitisers towards oxidative stress. FEBS Lett 535:179–182CrossRefGoogle Scholar
  95. Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630CrossRefGoogle Scholar
  96. Gladwin MT, Kim-Shapiro DB (2008) The functional nitrite reductase activity of the heme-globins. Blood 112(7):2636–2647CrossRefGoogle Scholar
  97. Greenacre SA, Ischiropoulos H (2001) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. Free Radic Res 34(6):541–581CrossRefGoogle Scholar
  98. Griffiths HR (2008) Is the generation of neo-antigenic determinants by free radicals central to the development of autoimmune rheumatoid disease? Autoimmun Rev 7(7):544–549CrossRefGoogle Scholar
  99. Grossmann M et al (1999) The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci U S A 96:11848–11853CrossRefGoogle Scholar
  100. Grune T, Reinheckel T, Davies KJA (1997) Degradation of oxidized proteins in mammalian cells. FASEB J 11(7):526–534CrossRefGoogle Scholar
  101. Guo Y et al (2004) Redox regulation of the embryonic stem cell transcription factor Oct-4 by thioredoxin. Stem Cells 22:259–264CrossRefGoogle Scholar
  102. Haghdoost S, Czene S, Naslund I, Skog S, Harms-Ringdahl M (2005) Extracellular 8-oxo-dG as a sensitive parameter for oxidative stress in vivo and in vitro. Free Radic Res 39:153–162CrossRefGoogle Scholar
  103. Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett 411(2–3):157–160CrossRefGoogle Scholar
  104. Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine, 2nd edn. Oxford University Press, Oxford, UKGoogle Scholar
  105. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, USACrossRefGoogle Scholar
  106. Han Y, Zeng F, Tan G, Yang C, Tang H, Luo Y, Feng J, Xiong H, Guo Q (2013) Hydrogen sulfide inhibits abnormal proliferation of lymphocytes via AKT/ GSK3beta signal pathway in systemic lupus erythematosus patients. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 31(6):795–804CrossRefGoogle Scholar
  107. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99(9):2075–2081CrossRefGoogle Scholar
  108. Heinecke JW, Li W, Francis GA, Goldstein JA (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91(6):2866–2872CrossRefGoogle Scholar
  109. Herr W, Cleary MA (1995) The POU domain: versatility in transcriptional regulation by a flexible two-in-one DNA-binding domain. Genes Dev 9:1679–1693CrossRefGoogle Scholar
  110. Hirota K et al (1997) AP-1 transcriptional activity is regulated by a direct association between thioredoxin and Ref-1. Proc Natl Acad Sci U S A 94:3633–3638CrossRefGoogle Scholar
  111. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redoxdependent signalling. Nat Rev Mol Cell Biol 15:411–421CrossRefGoogle Scholar
  112. Hosaka T et al (2004) Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 101:2975–2980CrossRefGoogle Scholar
  113. Huang HC, Nguyen T, Pickett CB (2002) Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. J Biol Chem 277(45):42769–42774CrossRefGoogle Scholar
  114. Hughes G et al (2005) Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J 389:83–89CrossRefGoogle Scholar
  115. Humphries KM et al (2005) Enhanced dephosphorylation of cAMP-dependent protein kinase by oxidation and thiol modification. J Biol Chem 280:2750–2758CrossRefGoogle Scholar
  116. Hwang E-S, Kim G-H (2007) Retracted: biomarkers for oxidative stress status of DNA, lipids, and proteins in vitro and in vivo cancer research. Toxicology 229:1–10CrossRefGoogle Scholar
  117. Iida T, Furuta A, Nakabeppu Y, Iwaki T (2004) Defense mechanism to oxidative DNA damage in glial cells. Neuropathology 24:125–130CrossRefGoogle Scholar
  118. Ikebuchi Y et al (1991) Superoxide anion increases intracellular pH, intracellular free calcium, and arachidonate release in human amnion cells. J Biol Chem 266:13233–13237Google Scholar
  119. Imlay JA, Linn S (1988) DNA damage and oxygen radical toxicity. Science 240(4857):1302–1309CrossRefGoogle Scholar
  120. Jackson AL, Chen R, Loeb LA (1998) Induction of microsatellite instability by oxidative DNA damage. Proc Natl Acad Sci U S A 95:12468–12473CrossRefGoogle Scholar
  121. Jacobson T, Navarrete C, Sharma SK, Sideri TC, Ibstedt S, Priya S, Grant CM, Christen P, Goloubinoff P, Tamas MJ (2012) Arsenite interferes with protein folding and triggers formation of protein aggregates in yeast. J Cell Sci 125:5073–5083CrossRefGoogle Scholar
  122. Jaiswal M, LaRusso NF, Nishioka N, Nakabeppu Y, Gores GJ (2001) Human Ogg1, a protein involved in the repair of 8-oxoguanine, is inhibited by nitric oxide. Cancer Res 61:6388–6393Google Scholar
  123. Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53:S26–S36CrossRefGoogle Scholar
  124. Jones DP (2006) Disruption of mitochondrial redox circuitry in oxidative stress. Chem Biol Interact 163:38–53CrossRefGoogle Scholar
  125. Jones DP (2008) Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295:C849–C868CrossRefGoogle Scholar
  126. Jones PL, Wolffe AP (1999) Relationships between chromatin organization and DNA methylation in determining gene expression. Semin Cancer Biol 9:339–347CrossRefGoogle Scholar
  127. Ju Y, Zhang W, Pei Y, Yang G (2013) H(2)S signaling in redox regulation of cellular functions. Can J Physiol Pharmacol 91(1):8–14CrossRefGoogle Scholar
  128. Kabil O, Motl N, Banerjee R (2014) H2S and its role in redox signaling. Biochim Biophys Acta 1844(8):1355–1366CrossRefGoogle Scholar
  129. Kamata H et al (2005a) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661CrossRefGoogle Scholar
  130. Kamata H et al (2005b) Redox regulation of nerve growth factor-induced neuronal differentiation of PC12 cells through modulation of the nerve growth factor receptor, TrkA. Arch Biochem Biophys 434:16–25CrossRefGoogle Scholar
  131. Kanegae Y et al (1998) Role of Rel/NF-kappaB transcription factors during the outgrowth of the vertebrate limb. Nature 392:611–614CrossRefGoogle Scholar
  132. Karin M, Yamamoto Y, Wang QM (2004) The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 3(1):17–26CrossRefGoogle Scholar
  133. Karsdal MA, Henriksen K, Leeming DJ, Woodworth T, Vassiliadis E, Bay-Jensen AC (2010) Novel combinations of post-translational modification (PTM) neo-epitopes provide tissue-specific biochemical markers—are they the cause or the consequence of the disease? Clin Biochem. 43(10–11):793–804CrossRefGoogle Scholar
  134. Kaspar JW, Niture SK, Jaiswal AK (2009) Nrf 2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47(9):1304–1309CrossRefGoogle Scholar
  135. Kasparova S, Brezova V, Valko M, Horecky J, Mlynarik V et al (2005) Study of the oxidative stress in a rat model of chronic brain hypoperfusion. Neurochem Int 46:601–611CrossRefGoogle Scholar
  136. Kasprzak KS (1995) Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest 13:411–430CrossRefGoogle Scholar
  137. Kaur H, Halliwell B (1994) Evidence for nitric oxide-mediated oxidative damage in chronic inflammation. Nitrotyrosine in serum and synovial fluid from rheumatoid patients. FEBS Lett 350(1):9–12CrossRefGoogle Scholar
  138. Kawasaki H, Tominaga M, Shigenaga A, Kamo A, Kamata Y, Iizumi K, Kimura U, Ogawa H, Takamori K, Yamakura F (2014) Importance of tryptophan nitration of carbonic anhydrase III for the morbidity of atopic dermatitis. Free Radic Biol Med 73:75–83CrossRefGoogle Scholar
  139. Keck RG (1996) The use of t-butyl hydroperoxide as a probe for methionine oxidation in proteins. Anal Biochem 236:56–62CrossRefGoogle Scholar
  140. Keller JN, Mark RJ, Bruce AJ, Blanc E, Rothstein JD et al (1997) 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience 806:85–96Google Scholar
  141. Kelly FJ, Mudway IS (2003) Protein oxidation at the air-lung interface. Amino Acids 25(375):396Google Scholar
  142. Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  143. Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA (1999) Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33:1353–1358CrossRefGoogle Scholar
  144. Khan F, Siddiqui AA (2006) Prevalence of anti-3-nitrotyrosine antibodies in the joint synovial fluid of patients with rheumatoid arthritis, osteoarthritis and systemic lupus erythematosus. Clin Chim Acta Int J Clin Chem 370(1–2):100–107CrossRefGoogle Scholar
  145. Kim WU, Cho ML, Jung YO, Min SY, Park SW, Min DJ, Yoon JH, Kim HY (2004) Type II collagen autoimmunity in rheumatoid arthritis. Am J Med Sci 327(4):202–211CrossRefGoogle Scholar
  146. Kirkland RA et al (2002) A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci 22:6480–6490CrossRefGoogle Scholar
  147. Koncz A, Pasztoi M, Mazan M, Fazakas F, Buzas E, Falus A, Nagy G (2007) Nitric oxide mediates T cell cytokine production and signal transduction in histidine decarboxylase knockout mice. J Immunol 179(10):6613–6619CrossRefGoogle Scholar
  148. Kozlov AV, Staniek K, Nohl H (1999) Nitrite reductase activity is a novel function of mammalian mitochondria. FEBS Lett 454(1–2):127–130CrossRefGoogle Scholar
  149. Kukreja RC, Hess ML (1992) The oxygen free-radical system: from equations through membrane–protein interactions to cardiovascular injury and protection. Cardiovasc Res 26:641–655CrossRefGoogle Scholar
  150. Lee SR et al (2002) Reversible inactivation of the tumor suppressor PTEN by H2O2. J Biol Chem 277:20336–20342CrossRefGoogle Scholar
  151. Lee NK et al (2005) A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859CrossRefGoogle Scholar
  152. Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26(5):591–598CrossRefGoogle Scholar
  153. Lee HT, Wu TH, Lin CS, Lee CS, Wei YH, Tsai CY, Chang DM (2016) The pathogenesis of systemic lupus erythematosus—from the viewpoint of oxidative stress and mitochondrial dysfunction. Mitochondrion 30:1–7CrossRefGoogle Scholar
  154. Lenaz G (2012) Mitochondria and reactive oxygen species. Which role in physiology and pathology? Adv Exp Med Biol 942:93–136CrossRefGoogle Scholar
  155. Levonen AL, Hill BG, Kansanen E, Zhang J, Darley-Usmar VM (2014) Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med 71C:196–207CrossRefGoogle Scholar
  156. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J Off Publ Fed Am Soc Exp Biol 19(9):1196–1198Google Scholar
  157. Li J et al (2006a) The NADPH oxidase NOX4 drives cardiac differentiation: role in regulating cardiac transcription factors and MAP kinase activation. Mol Biol Cell 17:3978–3988CrossRefGoogle Scholar
  158. Li L, Bhatia M, Moore PK (2006b) Hydrogen sulphide—a novel mediator of inflammation? Curr Opin Pharmacol 6(2):125–129CrossRefGoogle Scholar
  159. Lickteig K et al (1996) Effects of oxidation and reduction on the binding of transcription factors to cis-regulatory elements located in the FGF-4 gene. Mol Reprod Dev 44:146–152CrossRefGoogle Scholar
  160. Lundberg JO, Weitzberg E, Gladwin MT (2008) The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov 7(2):156–167CrossRefGoogle Scholar
  161. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR Jr, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5(12):865–869CrossRefGoogle Scholar
  162. Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B (1997) An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer’s disease. J Neurochem 68:2061–2069CrossRefGoogle Scholar
  163. Maheshwari R, Dubey RS (2009) Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regul 59(1):37–49CrossRefGoogle Scholar
  164. Mallikarjunappa S, Prakash M (2007) Urine protein thiols in chronic renal failure patients. Indian J Nephrol 17:7CrossRefGoogle Scholar
  165. Manak JR, Scott MP (1994) A class act: conservation of homeodomain protein functions. Development 1994(Suppl.):61–77Google Scholar
  166. Marietta C, Gulam H, Brooks PJ (2002) A single 8, 50-cyclo-20-deoxyadenosine lesion in a TATA box prevents binding of the TATA binding protein and strongly reduces transcription in vivo. DNA Repair (Amst) 1:967–975CrossRefGoogle Scholar
  167. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15CrossRefGoogle Scholar
  168. Mateen S, Moin S, Khan AQ, Zafar A, Fatima N (2016) Increased reactive oxygen species formation and oxidative stress in rheumatoid arthritis. PLoS ONE 11:e0152925CrossRefGoogle Scholar
  169. Meriga B, Reddy BK, Rao KR, Reddy LA, Kishor PBK (2004) Aluminium-induced production of oxygen radicals, lipid peroxidation and DNA damage in seedlings of rice (Oryza sativa). J Plant Physiol 161(1):63–68CrossRefGoogle Scholar
  170. Miesel R, Murphy MP, Kroger H (1996) enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma. Free Radic Res 25(2):161–169CrossRefGoogle Scholar
  171. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33:453–467CrossRefGoogle Scholar
  172. Minota S, Horie S, Yamada A, Iwamoto M, Yoshio T, Mimori A, Masuyama J, Kano S (1999) Circulating myeloperoxidase and anti-myeloperoxidase antibody in patients with vasculitis. Scand J Rheumatol 28(2):94–99CrossRefGoogle Scholar
  173. Mishra S, Jha AB, Dubey RS (2011) Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248(3):565–577CrossRefGoogle Scholar
  174. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410CrossRefGoogle Scholar
  175. Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125CrossRefGoogle Scholar
  176. Møller IM, Kristensen BK (2004) Protein oxidation in plant mitochondria as a stress indicator. Photochem Photobiol Sci 3(8):730–735CrossRefGoogle Scholar
  177. Montagna C, Di Giacomo G, Rizza S, Cardaci S, Ferraro E, Grumati P et al (2014) S-nitrosoglutathione reductase deficiency-induced S-nitrosylation results in neuromuscular dysfunction. Antioxid Redox Signal 21(4):570–587CrossRefGoogle Scholar
  178. Montuschi P, Collins JV, Ciabattoni G, Lazzeri N, Corradi M, Kharitonov SA, Barnes PJ (2000) Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med 162:1175–1177CrossRefGoogle Scholar
  179. Morrison D, Rahman I, Lannan S, MacNee W (1999) Epithelial permeability, inflammation, and oxidant stress in the air spaces of smokers. Am J Respir Crit Care Med 159:473–479CrossRefGoogle Scholar
  180. Morrison SJ et al (2000) Culture in reduced levels of oxygen promotes clonogenic sympathoadrenal differentiation by isolated neural crest stem cells. J Neurosci 20:7370–7376CrossRefGoogle Scholar
  181. Nakashima I et al (2005) Redox control of catalytic activities of membrane-associated protein tyrosine kinases. Arch Biochem Biophys 434:3–10CrossRefGoogle Scholar
  182. Neeley WL, Essigmann JM (2006) Mechanisms of formation, genotoxicity, and mutation of guanine oxidation products. Chem Res Toxicol 19:491–505CrossRefGoogle Scholar
  183. Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signalling. Curr Opin Plant Biol 5(5):388–395CrossRefGoogle Scholar
  184. Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484CrossRefGoogle Scholar
  185. Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C, Bracale R, Valerio A, Francolini M, Moncada S, Carruba MO (2003) Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science 299(5608):896–899CrossRefGoogle Scholar
  186. Nissim A, Winyard PG, Corrigall V, Fatah R, Perrett D, Panayi G, Chernajovsky Y (2005) Generation of neoantigenic epitopes after posttranslational modification of type II collagen by factors present within the inflamed joint. Arthritis Rheum 52(12):3829–3838CrossRefGoogle Scholar
  187. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Biol 49:249–279CrossRefGoogle Scholar
  188. Nowak D, Kasielski M, Antczak A, Pietras T, Bialasiewicz P (1999) Increased content of thiobarbituric acid-reactive substances and hydrogen peroxide in the expired breath condensate of patients with stable chronic obstructive pulmonary disease: no significant effect of cigarette smoking. Respir Med 93:389–396CrossRefGoogle Scholar
  189. Odobasic D, Kitching AR, Yang Y, O’Sullivan KM, Muljadi RC, Edgtton KL, Tan DS, Summers SA, Morand EF, Holdsworth SR (2013) Neutrophil myeloperoxidase regulates T-cell-driven tissue inflammation in mice by inhibiting dendritic cell function. Blood 121(20):4195–4204CrossRefGoogle Scholar
  190. Park HS et al (2000) Selenite inhibits the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) through a thiol redox mechanism. J Biol Chem 275:2527–2531CrossRefGoogle Scholar
  191. Pattison DI, Davies MJ (2005) Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 44(19):7378–7387CrossRefGoogle Scholar
  192. Perl A, Hanczko R, Doherty E (2012) Assessment of mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus. Methods Mol Biol 900:61–89CrossRefGoogle Scholar
  193. Pohl T et al (2002) The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci U S A 99:4514–4519CrossRefGoogle Scholar
  194. Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114(4):730–737CrossRefGoogle Scholar
  195. Poli G, Biasi F, Leonarduzzi G (2008) 4-hydroxynonenal—protein adducts: a reliable biomarker of lipid oxidation in liver diseases. Mol Asp Med 29:67–71CrossRefGoogle Scholar
  196. Radi R (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects. Acc Chem Res 46(2):550–559CrossRefGoogle Scholar
  197. Rao GN, Berk BC (1992) Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 70:593–599CrossRefGoogle Scholar
  198. Rhee SG (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science 312:1882–1883CrossRefGoogle Scholar
  199. Rigoni P et al (1993) Conserved cysteine residues of Oct-2 POU domain confer sensitivity to oxidation but are dispensable for sequence-specific DNA binding. Biochim Biophys Acta 1173:141–146CrossRefGoogle Scholar
  200. Robson EJ et al (2006) A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6:52–62CrossRefGoogle Scholar
  201. Romero-Puertas MC, Palma JM, Gómez M, Del Rio LA (2002) Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25(5):677–686CrossRefGoogle Scholar
  202. Ronnelid J, Wick MC, Lampa J, Lindblad S, Nordmark B, Klareskog L, van Vollenhoven RF (2005) Longitudinal analysis of citrullinated protein/peptide antibodies (anti-CP) during 5 year follow up in early rheumatoid arthritis: anti-cp status predicts worse disease activity and greater radiological progression. Ann Rheum Dis 64(12):1744–1749CrossRefGoogle Scholar
  203. Rowley MJ, Nandakumar KS, Holmdahl R (2008) The role of collagen antibodies in mediating arthritis. Mod Rheumatol 18(5):429–441CrossRefGoogle Scholar
  204. Rubio V, Valverde M, Rojas E (2017) Effects of atmospheric pollutants on the Nrf2 survival pathway. Environ Sci Pollut Res 17(2):369–382CrossRefGoogle Scholar
  205. Ruiz-Gines JA et al (2000) Reactive oxygen species induce proliferation of bovine aortic endothelial cells. J Cardiovasc Pharmacol 35:109–113CrossRefGoogle Scholar
  206. Ryan B, Eggleton P, Brown S, Viner N, Nissim A, Isenberg D, Haigh R, Winyard PG (2010) Oxidative and nitrative modification of C1q affects its structure, function and antigenicity in systemic lupus erythematosus. Free Radic Biol Med 49(Supplement):S148CrossRefGoogle Scholar
  207. Sablina AA et al (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313CrossRefGoogle Scholar
  208. Saidi S, Azaza M, Windmolders P, Van Pelt J, El-Feki A (2013) Cytotoxicity evaluation and antioxidant enzyme expression related to heavy metals found in tuna by-products meal: an in vitro study in human and rat liver cell lines. Exp Toxicol Pathol 65(7–8):1025–1033CrossRefGoogle Scholar
  209. Saitoh M et al (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signalregulating kinase (ASK) 1. EMBO J 17:2596–2606CrossRefGoogle Scholar
  210. Sanchez-Carbente MR et al (2005) Motoneuronal death during spinal cord development is mediated by oxidative stress. Cell Death Differ 12:279–291CrossRefGoogle Scholar
  211. Sandhu JK, Robertson S, Birnboim HC, Goldstein R (2003) Distribution of protein nitrotyrosine in synovial tissues of patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 30(6):1173–1181Google Scholar
  212. Sarkar S, Korolchuk VI, Renna M, Imarisio S, Fleming A, Williams A et al (2011) Complex inhibitory effects of nitric oxide on autophagy. Mol Cell 43:19–32CrossRefGoogle Scholar
  213. Sauer H, Wartenberg M (2005) Reactive oxygen species as signaling molecules in cardiovascular differentiation of embryonic stem cells and tumor-induced angiogenesis. Antioxid Redox Signal 7:1423–1434CrossRefGoogle Scholar
  214. Sauer H et al (2000) Role of reactive oxygen species and phosphatidylinositol 3-kinase in cardiomyocyte differentiation of embryonic stem cells. FEBS Lett 476:218–223CrossRefGoogle Scholar
  215. Sayre LM, Smith MA, Perry G (2001) Chemistry and biochemistry of oxidative stress in neurodegenerative disease. Curr Med Chem 8:721–738CrossRefGoogle Scholar
  216. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427CrossRefGoogle Scholar
  217. Scherz-Shouval R, Shvets E, Elazar Z (2007) Oxidation as a post-translational modification that regulates autophagy. Autophagy 3:371–373CrossRefGoogle Scholar
  218. Schmelter M et al (2006) Embryonic stem cells utilize reactive oxygen species as transducers of mechanical strain-induced cardiovascular differentiation. FASEB J 20:1182–1184CrossRefGoogle Scholar
  219. Schmidt-Ullrich R et al (2001) Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development 128:3843–3853Google Scholar
  220. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10(8):2247–2258CrossRefGoogle Scholar
  221. Schulze-Osthoff K, Los M, Baeuerle PA (1995) Redox signalling by transcription factors NF-kappa B and AP-1 in lymphocytes. Biochem Pharmacol 50(6):735–741CrossRefGoogle Scholar
  222. Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–326CrossRefGoogle Scholar
  223. Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161(6):1135–1144CrossRefGoogle Scholar
  224. Sharma P, Dubey RS (2005) Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul 46(3):209–221CrossRefGoogle Scholar
  225. Sharma SK, Goloubinoff P, Christen P (2011) Non-native proteins as newly identified targets of heavy metals and metalloids. In: Bánfalvi G (ed) Cellular effects of heavy metals. Springer, Heidelberg, pp 263–274CrossRefGoogle Scholar
  226. Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redoxdependent execution. FASEB J 20:1589–1598CrossRefGoogle Scholar
  227. Shi M et al (2004) Overexpression of Cu/Zn-superoxide dismutase and/or catalase in mice inhibits aorta smooth muscle cell proliferation. Am J Hypertens 17:450–456CrossRefGoogle Scholar
  228. Shibata Y et al (2003) Redox regulation of germline and vulval development in Caenorhabditis elegans. Science 302:1779–1782CrossRefGoogle Scholar
  229. Sies H, Sharov VS, Klotz LO, Briviba K (1994) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272(44):27812–27817CrossRefGoogle Scholar
  230. Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46(2):490–498CrossRefGoogle Scholar
  231. Skulachev VP (1977) Adenosine triphosphate and the transmembrane hydrogen ion potential-2 convertible and transportable forms of energy in the living cell. Usp Sovrem Biol 84(5):165–175Google Scholar
  232. Slade PG, Williams MV, Brahmbhatt V, Dash A, Wishnok JS, Tannenbaum SR (2010) Proteins modified by the lipid peroxidation aldehyde 9, 12-dioxo-10 (E)-dodecenoic acid in MCF7 breast cancer cells. Chem Res Toxicol 23(3):557–567CrossRefGoogle Scholar
  233. Smith AG et al (1998) Redox regulation of Brn-2/N-Oct-3 POU domain DNA binding activity and proteolytic formation of N-Oct-5 during melanoma cell nuclear extraction. Melanoma Res 8:2–10CrossRefGoogle Scholar
  234. Smith J et al (2000) Redox state is a central modulator of the balance between selfrenewal and differentiation in a dividing glial precursor cell. Proc Natl Acad Sci U S A 97:10032–10037CrossRefGoogle Scholar
  235. Souza JM, Peluffo G, Radi R (2008) Protein tyrosine nitration–functional alteration or just a biomarker? Free Radic Biol Med 45(4):357–366CrossRefGoogle Scholar
  236. Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16CrossRefGoogle Scholar
  237. Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325CrossRefGoogle Scholar
  238. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38CrossRefGoogle Scholar
  239. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899:191–208CrossRefGoogle Scholar
  240. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25:207–218CrossRefGoogle Scholar
  241. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582CrossRefGoogle Scholar
  242. Stamp LK, Khalilova I, Tarr JM, Senthilmohan R, Turner R, Haigh RC, Winyard PG, Kettle AJ (2012) Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology 51(10):1796–1803CrossRefGoogle Scholar
  243. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336CrossRefGoogle Scholar
  244. Strollo R, Ponchel F, Malmstrom V, Rizzo P, Bombardieri M, Wenham CY, Landy R, Perret D, Watt F, Corrigall VM, Winyard PG, Pozzilli P, Conaghan PG, Panayi GS, Klareskog L, Emery P, Nissim A (2013) Autoantibodies to post-translationally modified type II collagen as potential biomarkers for rheumatoid arthritis. Arthritis Rheum 65(7):1702–1712CrossRefGoogle Scholar
  245. Studer L et al (2000) Enhanced proliferation, survival, and dopaminergic differentiation of CNS precursors in lowered oxygen. J Neurosci 20:7377–7383CrossRefGoogle Scholar
  246. Suc I, Meilhac O, Lajoie-Mazenc I, Vandaele J, Jurgens G, Salvayre R, Negre-Salvayre A (1998) Activation of EGF receptor by oxidized LDL. FASEB J. 12:665–671CrossRefGoogle Scholar
  247. Suh E et al (1994) A homeodomain protein related to caudal regulates intestinespecific gene transcription. Mol Cell Biol 14:7340–7351CrossRefGoogle Scholar
  248. Sun Y, Oberley LW (1996) Redox regulation of transcriptional activators. Free Radic Biol Med 21:335–348CrossRefGoogle Scholar
  249. Suzukawa K et al (2000) Nerve growth factor-induced neuronal differentiation requires generation of Rac1-regulated reactive oxygen species. J Biol Chem 275:13175–13178CrossRefGoogle Scholar
  250. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6(11):917–935CrossRefGoogle Scholar
  251. Taddei ML et al (2007) Integrin-mediated cell adhesion and spreading engage different sources of reactive oxygen species. Antioxid Redox Signal 9:469–481CrossRefGoogle Scholar
  252. Tamas MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 4:252–267CrossRefGoogle Scholar
  253. Tammariello SP et al (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20:RC53CrossRefGoogle Scholar
  254. Tell G et al (1998a) Ref-1 controls pax-8 DNA-binding activity. Biochem Biophys Res Commun 252:178–183CrossRefGoogle Scholar
  255. Tell G et al (1998b) Redox potential controls the structure and DNA binding activity of the paired domain. J Biol Chem 273:25062–25072CrossRefGoogle Scholar
  256. Tell G et al (2000) An ‘environment to nucleus’ signaling system operates in B lymphocytes: redox status modulates BSAP/Pax-5 activation through Ref-1 nuclear translocation. Nucleic Acids Res 28:1099–1105CrossRefGoogle Scholar
  257. Telles RW, Ferreira GA, da Silva NP, Sato EI (2010) Increased plasma myeloperoxidase levels in systemic lupus erythematosus. Rheumatol Int 30(6):779–784CrossRefGoogle Scholar
  258. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRefGoogle Scholar
  259. Thannickal VJ et al (2000) Ras-dependent and -independent regulation of reactive oxygen species by mitogenic growth factors and TGF-beta1. FASEB J 14:1741–1748CrossRefGoogle Scholar
  260. Tiden AK, Sjogren T, Svensson M, Bernlind A, Senthilmohan R, Auchere F, Norman H, Markgren PO, Gustavsson S, Schmidt S, Lundquist S, Forbes LV, Magon NJ, Paton LN, Jameson GN, Eriksson H, Kettle AJ (2011) 2-thioxanthines are mechanism-based inactivators of myeloperoxidase that block oxidative stress during inflammation. J Biol Chem 286(43):37578–37589CrossRefGoogle Scholar
  261. Toshniwal PK, Zarling EJ (1992) Evidence for increased lipid peroxidation in multiple sclerosis. Neurochem Res 17:205–207CrossRefGoogle Scholar
  262. Tothova Z et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339CrossRefGoogle Scholar
  263. Trinder PK, Maeurer MJ, Stoerkel SS, Loos M (1997) altered (oxidized) C1q induces a rheumatoid arthritis-like destructive and chronic inflammation in joint structures in arthritis-susceptible rats. Clin Immunol Immunopathol 82(2):149–156CrossRefGoogle Scholar
  264. Tripathi DN, Chowdhury R, Trudel LJ, Tee AR, Slack RS, Walker CL et al (2013) Reactive nitrogen species regulate autophagy through ATM-AMPK-TSC2-mediated suppression of mTORC1. Proc Natl Acad Sci U S A 110:E2950–E2957CrossRefGoogle Scholar
  265. Tsatmali M et al (2006) Reactive oxygen species modulate the differentiation of neurons in clonal cortical cultures. Mol Cell Neurosci 33:345–357CrossRefGoogle Scholar
  266. Tsatmali M et al (2005) Newborn neurons acquire high levels of reactive oxygen species and increased mitochondrial proteins upon differentiation from progenitors. Brain Res 1040:137–150CrossRefGoogle Scholar
  267. Tsukagoshi H, Kawata T, Shimizu Y, Ishizuka T, Dobashi K, Mori M (2002) 4-Hydroxy-2-nonenal enhances fibronectin production by IMR-90 human lung fibroblasts partly via activation of epidermal growth factor receptor-linked extracellular signal-regulated kinase p44/42 pathway. Toxicol Appl Pharmacol 184:127–135CrossRefGoogle Scholar
  268. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344CrossRefGoogle Scholar
  269. Uchida K, Shiraishi M, Naito Y, Torii Y, Nakamura Y, Osawa T (1999) Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem 274:2234–2242CrossRefGoogle Scholar
  270. Ueda S et al (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414CrossRefGoogle Scholar
  271. Valcarcel-Ares MN, Riveiro-Naveira RR, Vaamonde-Garcia C, Loureiro J, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2014) Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology 53(7):1332–1343CrossRefGoogle Scholar
  272. Valko M, Morris H, Cronin M (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208CrossRefGoogle Scholar
  273. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160(1):1–40CrossRefGoogle Scholar
  274. van der Vliet A, Eiserich JP, Halliwell B, Cross CE (1997) Formation of reactive nitrogen species during peroxidase-catalyzed oxidation of nitrite. A potential additional mechanism of nitric oxide-dependent toxicity. J Biol Chem 272(12):7617–7625CrossRefGoogle Scholar
  275. Ventura JJ et al (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915CrossRefGoogle Scholar
  276. Vera-Ramirez L, Perez-Lopez P, Varela-Lopez A, Ramirez Tortosa M, Battino M, Quiles JL (2013) Curcumin and liver disease. BioFactors 39(1):88–100CrossRefGoogle Scholar
  277. Verma S, Dubey RS (2003) Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci 164(4):645–655CrossRefGoogle Scholar
  278. Wagner BA, Venkataraman S, Buettner GR (2011) The rate of oxygen utilization by cells. Free Radic Biol Med 51:700–712CrossRefGoogle Scholar
  279. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896CrossRefGoogle Scholar
  280. Webb A, Bond R, McLean P, Uppal R, Benjamin N, Ahluwalia A (2004) Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia–reperfusion damage. Proc Natl Acad Sci U S A 101(37):13683–13688CrossRefGoogle Scholar
  281. Whiteman M, Moore PK (2009) Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13(3):488–507CrossRefGoogle Scholar
  282. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4(1):13–32CrossRefGoogle Scholar
  283. Whiteman M, Li L, Rose P, Tan CH, Parkinson DB, Moore PK (2010a) The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages. Antioxid Redox Signal 12(10):1147–1154CrossRefGoogle Scholar
  284. Whiteman M, Haigh R, Tarr JM, Gooding KM, Shore AC, Winyard PG (2010b) Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann N Y Acad Sci 1203:146–150CrossRefGoogle Scholar
  285. Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signalling. Free Radic Biol Med 45:549–561CrossRefGoogle Scholar
  286. Winyard PG, Ryan B, Eggleton P, Nissim A, Taylor E, Lo Faro ML, Burkholz T, Szabo-Taylor KE, Fox B, Viner N, Haigh RC, Benjamin N, Jones AM, Whiteman M (2011) Measurement and meaning of markers of reactive species of oxygen, nitrogen and sulfur in healthy human subjects and patients with inflammatory joint disease. Biochem Soc Trans 39(5):1226–1232CrossRefGoogle Scholar
  287. Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313(Pt 1):17–29CrossRefGoogle Scholar
  288. Xanthoudakis S et al (1992) Redox activation of Fos–Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J 11:3323–3335CrossRefGoogle Scholar
  289. Xanthoudakis S et al (1996) The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc Natl Acad Sci U S A 93:8919–8923CrossRefGoogle Scholar
  290. Yamamoto T, Katayama I, Nishioka K (1998) Nitric oxide production and inducible nitric oxide synthase expression in systemic sclerosis. J Rheumatol 25(2):314–317Google Scholar
  291. Yamauchi Y, Furutera A, Seki K, Toyoda Y, Tanaka K, Sugimoto Y (2008) Malondialdehyde generated from peroxidized linolenic acid causes protein modification in heat-stressed plants. Plant Physiol Biochem 46(8–9):786–793CrossRefGoogle Scholar
  292. Yan J, Tsuichihara N, Etoh T, Iwai S (2007) Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Environ 30(10):1320–1325CrossRefGoogle Scholar
  293. Zaefyzadeh M, Quliyev RA, Babayeva SM, Abbasov MA (2009) The effect of the interaction between genotypes and drought stress on the superoxide dismutase and chlorophyll content in durum wheat landraces. Turk J Biol 33(1):1–7Google Scholar
  294. Zhang Z, Naughton D, Winyard PG, Benjamin N, Blake DR, Symons MC (1998) Generation of nitric oxide by a nitrite reductase activity of xanthine oxidase: a potential pathway for nitric oxide formation in the absence of nitric oxide synthase activity. Biochem Biophys Res Commun 249(3):767–772CrossRefGoogle Scholar
  295. Zhang C, Yang L, Wang XB, Wang JS, Geng YD, Yang CS et al (2013) Calyxin Y induces hydrogen peroxide-dependent autophagy and apoptosis via JNK activation in human nonsmall cell lung cancer NCI-H460 cells. Cancer Lett 340:51–62CrossRefGoogle Scholar
  296. Zhi L, Ang AD, Zhang H, Moore PK, Bhatia M (2007) Hydrogen sulfide induces the synthesis of proinflammatory cytokines in human monocyte cell line U937 via the ERK-NF-kappaB pathway. J Leukoc Biol 81(5):1322–1332CrossRefGoogle Scholar
  297. Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E (2010) Exposure to hydrogen peroxide induces oxidation and activation of AMP-activated protein kinase. J Biol Chem 285:33154–33164CrossRefGoogle Scholar
  298. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950CrossRefGoogle Scholar
  299. Zweier JL, Samouilov A, Kuppusamy P (1999) Non-enzymatic nitric oxide synthesis in biological systems. Biochim Biophys Acta 1411(2–3):250–262CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations