Advertisement

Sources of Oxidants and Function of ROS Inside the Macromolecule Cells

  • Loutfy H. MadkourEmail author
Chapter
Part of the Nanomedicine and Nanotoxicology book series (NANOMED)

Abstract

Reactive oxygen species (ROS) is a generic name given to a variety of molecules and free radicals derived from molecular oxygen. The reduction of oxygen produces relatively stable intermediates. One-electron reduction produces superoxide anion, which is the precursor of most ROS. As most commonly used, ROS in this chapter refer to superoxide, hydrogen peroxide, and their derivatives such as the hydroxyl radical. Reactive oxygen species (ROS) were initially recognized as toxic by-products of aerobic metabolism. In recent years, it has become apparent that ROS plays an important signaling role in plants, controlling processes such as growth, development, and especially response to biotic and abiotic environmental stimuli. ROS include free radicals such as superoxide anion (\( {{{\text{O}}_{ 2}}^{\mathbf{{ \bullet}} - }} \)), hydroxyl radical (\( ^{ \bullet } {\text{OH}} \)), as well as non-radical molecules like hydrogen peroxide (H2O2), singlet oxygen (1O2), and so forth. Stepwise reduction of molecular oxygen (O2) by high-energy exposure or electron transfer reactions leads to the production of the highly reactive ROS. Reactive oxygen species (ROS) are produced by living organisms as a result of normal cellular metabolism and environmental factors, such as air pollutants or cigarette smoke. ROS are highly reactive molecules and can damage cell structures such as carbohydrates, nucleic acids, lipids, and proteins and alter their functions.

Keywords

Reactive oxygen species (ROS) Highly reactive molecules \( {{{\text{O}}_{ 2}}^{\mathbf{{ \bullet}} - }} \) 1O2 \( ^{ \bullet } {\text{OH}} \) H2O2 Living organisms 

References

  1. Adamson S, Leitinger N (2011) Phenotypic modulation of macrophages in response to plaque lipids. Curr Opin Lipidol 22:335–342CrossRefGoogle Scholar
  2. Aletaha D et al (2010) Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League against rheumatism collaborative initiative. Arthritis Rheum 62(9):2569–2581.  https://doi.org/10.1002/art.27584 (20872595)CrossRefGoogle Scholar
  3. Al-Shobaili HA et al (2011) Hydroxyl radical modification of immunoglobulin G generated cross-reactive antibodies: its potential role in systemic lupus erythematosus. Clin Med Insights Arthritis Musculoskelet Disord 4:11–19 (21487454)CrossRefGoogle Scholar
  4. Alvarez B et al (1996) Peroxynitrite-dependent tryptophan nitration. Chem Res Toxicol 9(2):390–396.  https://doi.org/10.1021/tx950133b (8839040)CrossRefGoogle Scholar
  5. Amara A et al (1995) Autoantibodies to malondialdehyde-modified epitope in connective tissue diseases and vasculitides. Clin Exp Immunol 101(2):233–238.  https://doi.org/10.1111/j.1365-2249.1995.tb08344.x (7544246)CrossRefGoogle Scholar
  6. Angelini R, Cona A, Federico R, Fincato P, Tavladoraki P, Tisi A (2010) Plant amine oxidases “on the move”: an update. Plant Physiol Biochem 48:560–564CrossRefGoogle Scholar
  7. Apel K, Hirt H (2004) Ann Rev Plant Biol 55:373–399CrossRefGoogle Scholar
  8. Arbuckle MR et al (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349(16):1526–1533.  https://doi.org/10.1056/NEJMoa021933 (14561795)CrossRefGoogle Scholar
  9. Aruoma OI, Halliwell B, Gajewski E, Dizdaroglu M (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273(Pt 3):601–604CrossRefGoogle Scholar
  10. Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396CrossRefGoogle Scholar
  11. Ashida H, Mimuro H, Ogawa M, Kobayashi T, Sanada T, Kim M, Sasakawa C (2011) Cell death and infection: a double-edged sword for host and pathogen survival. J Cell Biol 195:931–942CrossRefGoogle Scholar
  12. Azzam EI, de Toledo SM, Spitz DR, Little JB (2002) Oxidative metabolism modulates signal transduction and micronucleus formation in bystander cells from a-particle irradiated normal human fibroblasts. Cancer Res 62:5436–5442Google Scholar
  13. Biaglow JE, Mitchell JB, Held K (1992) The importance of peroxide and superoxide in the X-ray response. Int J Radiat Oncol Biol Phys 22:665–669CrossRefGoogle Scholar
  14. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, Jahn TP (2007) Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282:1183–1192CrossRefGoogle Scholar
  15. Bjorkoy G, Lamark T, Johansen T (2006) p62/SQSTM1: a missing link between protein aggregates and the autophagy machinery. Autophagy 2:138–139CrossRefGoogle Scholar
  16. Blanco P et al (2005) Increase in activated CD8+ T lymphocytes expressing perforin and granzyme B correlates with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 52(1):201–211.  https://doi.org/10.1002/art.20745 (15641052)CrossRefGoogle Scholar
  17. Brändlein S et al (2002) Human monoclonal IgM antibodies with apoptotic activity isolated from cancer patients. Hum Antibodies 11(4):107–119 (12775891)CrossRefGoogle Scholar
  18. Brändlein S et al (2003) Natural IgM antibodies and immunosurveillance mechanisms against epithelial cancer cells in humans. Can Res 63(22):7995–8005 (14633732)Google Scholar
  19. Brennan ML, Wu W, Fu X, Shen Z, Song W et al (2002) A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J Biol Chem 277:17415–17427CrossRefGoogle Scholar
  20. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303:1532–1535CrossRefGoogle Scholar
  21. Bronte V et al (2005) Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201(8):1257–1268.  https://doi.org/10.1084/jem.20042028 (15824085)CrossRefGoogle Scholar
  22. Bruenner BA, Jones AD, German JB (1995) Direct characterization of protein adducts of the lipid peroxidation product 4-hydroxy-2-nonenal using electrospray mass spectrometry. Chem Res Toxicol 8(4):552–559.  https://doi.org/10.1021/tx00046a009 (7548735)CrossRefGoogle Scholar
  23. Burska AN et al (2014) Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediat Inflamm 2014(492873) (24782594)Google Scholar
  24. Cadenas E (2004) Mitochondrial free radical production and cell signaling. Mol Aspects Med 25(1–2):17–26CrossRefGoogle Scholar
  25. Cadet J, Douki T, Gasparutto D, Ravanat JL (2003) Oxidative damage to DNA: formation, measurement and biochemical features. Mutat Res 531:5–23CrossRefGoogle Scholar
  26. Caltagirone A, Weiss G, Pantopoulos K (2001) Modulation of cellular iron metabolism by hydrogen peroxide. Effects of H2O2 on the expression and function of iron-responsive element containing mRNAs in B6 fibroblasts. J Biol Chem 276:19738–19745CrossRefGoogle Scholar
  27. Campello S, Strappazzon F, Cecconi F (2014) Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta 1837:451–460CrossRefGoogle Scholar
  28. Casciola-Rosen LA, Anhalt G, Rosen A (1994) Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med 179(4):1317–1330.  https://doi.org/10.1084/jem.179.4.1317 (7511686)CrossRefGoogle Scholar
  29. Casciola-Rosen L et al (1999) Cleavage by granzyme B is strongly predictive of autoantigen status: implications for initiation of autoimmunity. J Exp Med 190(6):815–826.  https://doi.org/10.1084/jem.190.6.815 (10499920)CrossRefGoogle Scholar
  30. Chan RC, Wang M, Li N, Yanagawa Y, Onoe K, Lee JJ, Nel AE (2006) Pro-oxidative diesel exhaust particle chemicals inhibit LPS-induced dendritic cell responses involved in Thelper differentiation. J Allergy Clin Immunol 118:455–465CrossRefGoogle Scholar
  31. Chapman ALP et al (2002) Chlorination of bacterial and neutrophil proteins during phagocytosis and killing of Staphylococcus aureus. J Biol Chem 277(12):9757–9762.  https://doi.org/10.1074/jbc.M106134200 (11733505)CrossRefGoogle Scholar
  32. Chen C, Stenzel-Poore MP, Rittenberg MB (1991) Natural auto- and polyreactive antibodies differing from antigen-induced antibodies in the H chain CDR3. J Immunol (Baltimore, Md.: 1950) 147(7):2359–2367 (1918968)Google Scholar
  33. Chiu SM, Xue LY, Friedman LR, Oleinick NL (1993) Copper ion-mediated sensitization of nuclear matrix attachment sites to ionizing radiation. Biochemistry 32:6214–6219CrossRefGoogle Scholar
  34. Cho AK, Sioutas C, Miguel AH, Kumagai Y, Schmitz DA et al (2005) Redox activity of airborne particulate matter at different sites in the Los Angeles Basin. Environ Res 99:40–47CrossRefGoogle Scholar
  35. Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126CrossRefGoogle Scholar
  36. Comhair SA, Thomassen MJ, Erzurum SC (2000) Differential induction of extracellular glutathione peroxidase and nitric oxide synthase 2 in airways of healthy individuals exposed to 100% O(2) or cigarette smoke. Am J Respir Cell Mol Biol 23:350–354CrossRefGoogle Scholar
  37. Considine MJ, Sandalio LM, Foyer CH (2015) Unravelling how plants benefit from ROS and NO reactions, while resisting oxidative stress. Ann Bot 116:469–473CrossRefGoogle Scholar
  38. Cornic G, Briantais J-M (1991) Partitioning of photosynthetic electron flow between CO2 and O2 reduction in a C3 leaf (Phaseolus vulgaris L.) at different CO2 concentrations and during drought stress. Planta 183:178–184CrossRefGoogle Scholar
  39. D’Autreaux B, Toledano MB (2007) ROS as signaling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol 8(10):813–824CrossRefGoogle Scholar
  40. da Silva WS, Gomez-Puyou A, de Gomez-Puyou MT, Moreno-Sanchez R, De Felice FG, de Meis L et al (2004) Mitochondrial bound hexokinase activity as a preventive antioxidant defense: steady-state ADP formation as a regulatory mechanism of membrane potential and reactive oxygen species generation in mitochondria. J Biol Chem 279:39846–39855CrossRefGoogle Scholar
  41. de Leeuw K et al (2007) Accumulation of advanced glycation endproducts in patients with systemic lupus erythematosus. Rheumatology (Oxford, England) 46(10):1551–1556.  https://doi.org/10.1093/rheumatology/kem215 (17848401)CrossRefGoogle Scholar
  42. De Sanctis F et al (2014) The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 5:69 (24605112)Google Scholar
  43. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S (2003) MAPK pathways in radiation responses. Oncogene 22:5885–5896CrossRefGoogle Scholar
  44. Denzler KL, Borchers MT, Crosby JR, Cieslewicz G, Hines EM et al (2001) Extensive eosinophil degranulation and peroxidase-mediated oxidation of airway proteins do not occur in a mouse ovalbumin-challenge model of pulmonary inflammation. J Immunol 167:1672–1682CrossRefGoogle Scholar
  45. Dietz KJ (2015) Efficient high light acclimation involves rapid processes at multiple mechanistic levels. J Exp Bot 66:2401–2414CrossRefGoogle Scholar
  46. Donnelly S et al (2006) Impaired recognition of apoptotic neutrophils by the C1q/ calreticulin and CD91 pathway in systemic lupus erythematosus. Arthritis Rheum 54(5):1543–1556.  https://doi.org/10.1002/art.21783 (16645988)CrossRefGoogle Scholar
  47. Dorman JS et al (1984) The Pittsburgh insulin-dependent diabetes mellitus (IDDM) morbidity and mortality study. Mortality results. Diabetes 33(3):271–276.  https://doi.org/10.2337/diab.33.3.27110.2337/diabetes.33.3.271 (6698317)CrossRefGoogle Scholar
  48. Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95CrossRefGoogle Scholar
  49. Drummond RA, Brown GD (2011) The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 14:392–399CrossRefGoogle Scholar
  50. Dupuy C, Virion A, Ohayon R, Kaniewski J, Dème D, Pommier J (1991) Mechanism of hydrogen peroxide formation catalyzed by NADPH oxidase in thyroid plasma membrane. J Biol Chem 266:3739–3743Google Scholar
  51. Eggleton P et al (2013) Detection and isolation of human serum autoantibodies that recognize oxidatively modified autoantigens. Free Radic Biol Med 57:79–91.  https://doi.org/10.1016/j.freeradbiomed.2012.11.006,23246567CrossRefGoogle Scholar
  52. Estevez AG et al (1998) Nitric oxide and superoxide contribute to motor neuron apoptosis induced by trophic factor deprivation. J Neurosci 18:923–931CrossRefGoogle Scholar
  53. Feghali-Bostwick CA et al (2008) Autoantibodies in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177(2):156–163.  https://doi.org/10.1164/rccm.200701-014OC (17975205)CrossRefGoogle Scholar
  54. Fenton HJH (1984) Oxidation of tartaric acid in the presence of iron. J Chem Soc 65:899–910CrossRefGoogle Scholar
  55. Fischer BB, Hideg E, Krieger-Liszkay A (2013) Production, detection, and signaling of singlet oxygen in photosynthetic organisms. Antioxid Redox Signal 18:2145–2162CrossRefGoogle Scholar
  56. Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol Plant 119:355–364CrossRefGoogle Scholar
  57. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(1866):1875.  https://doi.org/10.1105/tpc.105.033589CrossRefGoogle Scholar
  58. Foyer CH, Noctor G (2013) Redox signaling in plants. Antioxid Redox Signal 18:2087–2090CrossRefGoogle Scholar
  59. Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484CrossRefGoogle Scholar
  60. Friggeri A et al (2011) Participation of the receptor for advanced glycation end products in efferocytosis. J Immunol (Baltimore, Md.: 1950) 186(11):6191–6198.  https://doi.org/10.4049/jimmunol.1004134 (21502377)CrossRefGoogle Scholar
  61. Frostegard J et al (2005) Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 52(1):192–200.  https://doi.org/10.1002/art.20780 (15641060)CrossRefGoogle Scholar
  62. Garnotel R et al (2004) Enhanced activation of and increased production of matrix metalloproteinase-9 by human blood monocytes upon adhering to carbamylated collagen. FEBS Lett 563(1–3):13–16.  https://doi.org/10.1016/S0014-5793(04)00233-9 (15063715)CrossRefGoogle Scholar
  63. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ et al (2010) PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131CrossRefGoogle Scholar
  64. Gilmour MI (2012) Influence of air pollutants on allergic sensitization: the paradox of increased allergies and decreased resistance to infection. Toxicol Pathol 40:312–314CrossRefGoogle Scholar
  65. Gomes LC, Di Benedetto G, Scorrano L (2011) During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13:589–598CrossRefGoogle Scholar
  66. Graf E, Mahoney JR, Bryant RG, Eaton JW (1984) Ironcatalyzed hydroxyl radical formation. Stringent requirement for free iron coordination site. J Biol Chem 259:3620–3624Google Scholar
  67. Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemiareperfusion injury. Am J Physiol 255:H1269–H1275Google Scholar
  68. Griffith B, Pendyala S, Hecker L, Lee PJ, Natarajan V, Thannickal VJ (2009) NOX enzymes and pulmonary disease. Antioxid Redox Signal 11:2505–2516CrossRefGoogle Scholar
  69. Griffiths HR, Lunec J (1988) Effect of polymorph derived oxidants on IgG in relation to rheumatoid factor binding. Scand J Rheumatol 17(Supplement 75):148–156 (2853449)CrossRefGoogle Scholar
  70. Griffiths HR, Lunec J (1996) The C1q binding activity of IgG is modified in vitro by reactive oxygen species: implications for rheumatoid arthritis. FEBS Lett 388(2–3):161–164 (8690077)CrossRefGoogle Scholar
  71. Guo G, Yan-Sanders Y, Lyn-Cook BD, Wang T, Tamae D et al (2003) Manganese superoxide dismutase-mediated gene expression in radiation induced adaptive responses. Mol Cell Biol 23:2362–2378CrossRefGoogle Scholar
  72. Haber F, Weiss JJ (1934) The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond Ser A 147:332–351CrossRefGoogle Scholar
  73. Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:14S–22SCrossRefGoogle Scholar
  74. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  75. Halliwell B, Gutteridge JM (2015) Free radicals in biology and medicine. Oxford University Press, New York, NYCrossRefGoogle Scholar
  76. Hampton MB, Kettle AJ, Winterbourn CC (1998) Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92:3007–3017CrossRefGoogle Scholar
  77. Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563CrossRefGoogle Scholar
  78. Handy DE, Loscalzo J (2012) Redox regulation of mitochondrial function. Antioxid Redox Signal 16:1323–1367CrossRefGoogle Scholar
  79. Hara-Chikuma M, Chikuma S, Sugiyama Y, Kabashima K, VerkmanAS Inoue S, Miyachi Y (2012) Chemokine-dependent T cell migration requires aquaporin-3-mediated hydrogen peroxide uptake. J Exp Med 209:1743–1752CrossRefGoogle Scholar
  80. Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271CrossRefGoogle Scholar
  81. Harman LS, Mottley C, Mason RP (1984) Free radical metabolites of l-cysteine oxidation. J Biol Chem 259(9):5606–5611 (6325443)Google Scholar
  82. Hazen SL, Heinecke JW (1997) 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J Clin Invest 99(9):2075–2081.  https://doi.org/10.1172/JCI119379 (9151778)CrossRefGoogle Scholar
  83. Heinecke JW et al (1993) Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross-linking of proteins. J Clin Invest 91(6):2866–2872.  https://doi.org/10.1172/JCI116531 (8390491)CrossRefGoogle Scholar
  84. Herrmann M et al (1998) Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum 41(7):1241–1250.  https://doi.org/10.1002/1529-0131(199807)41:7%3c1241:AID-ART15%3e3.0.CO;2-H (9663482)CrossRefGoogle Scholar
  85. Hiltermann JT, Lapperre TS, van Bree L, Steerenberg PA, Brahim JJ et al (1999) Ozone-induced inflammation assessed in sputum and bronchial lavage fluid from asthmatics: a new noninvasive tool in epidemiologic studies on air pollution and asthma. Free Radic Biol Med 27:1448–1454CrossRefGoogle Scholar
  86. Holmgren A et al (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33:1375–1377CrossRefGoogle Scholar
  87. Horkko S et al (1999) Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid–protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 103(1):117–128.  https://doi.org/10.1172/JCI4533 (9884341)CrossRefGoogle Scholar
  88. Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MA, Glogauer M, Grinstein S, Brumell JH (2009) Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 106:6226–6231CrossRefGoogle Scholar
  89. Huang J, Lam GY, Brumell JH (2011) Autophagy signaling through reactive oxygen species. Antioxid Redox Signal 14:2215–2231CrossRefGoogle Scholar
  90. Huang Y et al (2014) An abundant dysfunctional apolipoprotein A1 in human atheroma. Nat Med 20(2):193–203.  https://doi.org/10.1038/nm.3459 (24464187)CrossRefGoogle Scholar
  91. Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283:22847–22857CrossRefGoogle Scholar
  92. Ischiropoulos H et al (1992) Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys 298(2):431–437.  https://doi.org/10.1016/0003-9861(92)90431-U (1416974)CrossRefGoogle Scholar
  93. Ishikawa T, Kondo Y, Goda K, Fujisawa M (2005) Overexpression of endothelial nitric oxide synthase in transgenic mice accelerates testicular germ cell apoptosis induced by experimental cryptorchidism. J Androl 26(2):281–288CrossRefGoogle Scholar
  94. Itabe H et al (1996) Oxidized phosphatidylcholines that modify proteins: analysis by monoclonal antibody against oxidized low-density lipoprotein. J Biol Chem 271(52):33208–33217.  https://doi.org/10.1074/jbc.271.52.33208 (8969177)CrossRefGoogle Scholar
  95. Iwanaga M, Mori K, Iida T, Urata Y, Matsuo T et al (1998) Nuclear factor kappa B dependent induction of gamma glutamylcysteine synthetase by ionizing radiation in T98G human glioblastoma cells. Free Radic Biol Med 24:1256–1268CrossRefGoogle Scholar
  96. Jaisson S et al (2007) Carbamylated albumin is a potent inhibitor of polymorphonuclear neutrophil respiratory burst. FEBS Lett 581(7):1509–1513.  https://doi.org/10.1016/j.febslet.2007.03.008 (17376441)CrossRefGoogle Scholar
  97. Janssen YM, Van Houten B, Borm PJ, Mossman BT (1993) Cell and tissue responses to oxidative damage. Lab Invest 69:261–274Google Scholar
  98. Kehrer JP (2000) The Haber-Weiss reaction and mechanisms of toxicity. Toxicology 149:43–50CrossRefGoogle Scholar
  99. Khan F, Siddiqui AA, Ali R (2006) Measurement and significance of 3-nitrotyrosine in systemic lupus erythematosus. Scand J Immunol 64(5):507–514.  https://doi.org/10.1111/j.1365-3083.2006.01794.x (17032243)CrossRefGoogle Scholar
  100. Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 144(1):266–273.  https://doi.org/10.1378/chest.12-2664 (23880677)CrossRefGoogle Scholar
  101. Kirkham PA et al (2011) Oxidative stress-induced antibodies to carbonyl-modified protein correlate with severity of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 184(7):796–802.  https://doi.org/10.1164/rccm.201010-1605OC (21965015)CrossRefGoogle Scholar
  102. Klebanoff SJ (2005) Myeloperoxidase: friend and foe. J Leukoc Biol 77:598–625CrossRefGoogle Scholar
  103. Klotz LO et al (2003) Singlet oxygen-induced signaling effects in mammalian cells. Photochem Photobiol Sci 2:88–94CrossRefGoogle Scholar
  104. Kulcharyk PA, Heinecke JW (2001) Hypochlorous acid produced by the myeloperoxidase system of human phagocytes induces covalent cross-links between DNA and protein. Biochemistry 40:3648–3656CrossRefGoogle Scholar
  105. Kurien BT et al (2011) Degree of modification of Ro60 by the lipid peroxidation by-product 4-hydroxy-2-nonenal may differentially induce Sjögren syndrome or systemic lupus erythematosus in BALB/c mice. Free Radic Biol Med 50(10):1222–1233.  https://doi.org/10.1016/j.freeradbiomed.2010.10.687 (20946951)CrossRefGoogle Scholar
  106. Kurien BT et al (2013) Immunization with 60 kD Ro peptide produces different stages of preclinical autoimmunity in a Sjögren’s syndrome model among multiple strains of inbred mice. Clin Exp Immunol 173(1):67–75.  https://doi.org/10.1111/cei.12094CrossRefGoogle Scholar
  107. Kuzin B et al (1996) Nitric oxide regulates cell proliferation during Drosophila development. Cell 87:639–649CrossRefGoogle Scholar
  108. Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11:9–12CrossRefGoogle Scholar
  109. Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol 4:181–189CrossRefGoogle Scholar
  110. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res 61:3894–3901Google Scholar
  111. Li WG, Miller FJ Jr, Zhang HJ, Spitz DR, Oberley LW, Weintraub NL (2001) H (2) O (2)-induced O (2) production by a non-phagocytic NAD (P)H oxidase causes oxidant injury. J Biol Chem 276(31):29251–29256CrossRefGoogle Scholar
  112. Li M, Zhao L, Liu J, Liu A, Jia C, Ma D, Jiang Y, Bai X (2010) Multi-mechanisms are involved in reactive oxygen species regulation of mTORC1 signaling. Cell Signal 22:1469–1476CrossRefGoogle Scholar
  113. Ligier S, Fortin PR, Newkirk MM (1998) A new antibody in rheumatoid arthritis targeting glycated IgG: IgM anti-IgG-AGE. Br J Rheumatol 37(12):1307–1314.  https://doi.org/10.1093/rheumatology/37.12.1307 (9973155)CrossRefGoogle Scholar
  114. Liochev SI, Fridovich I (2002) The Haber-Weiss cycled 70 years later: an alternative view. Redox Rep 7:55–57CrossRefGoogle Scholar
  115. Lu SC (1999) Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J 13:1169–1183CrossRefGoogle Scholar
  116. Lundberg M et al (2001) Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem 276:26269–26275CrossRefGoogle Scholar
  117. Madkour LH (2019) Function of reactive oxygen species (ROS) inside the living organisms and sources of oxidants. Pharm Sci Anal Res J 2(2):1–19: 180023. https://chembiopublishers.com/PSARJ/PSARJ1800023.pdf. https://chembiopublishers.com/PSARJ/current-issue.php. http://chembiopublishers.com/PSARJ/
  118. Mannoor K et al (2012) Expression of natural autoantibodies in MRL-lpr mice protects from lupus nephritis and improves survival. J Immunol 188(8):3628–3638.  https://doi.org/10.4049/jimmunol.1102859 (22407922)CrossRefGoogle Scholar
  119. Mantegazza AR, Savina A, Vermeulen M, Perez L, Geffner J, Hermine O, Rosenzweig SD, Faure F, Amigorena S (2008) NADPH oxidase controls phagosomal pH and antigen cross-presentation in human dendritic cells. Blood 112:4712–4722CrossRefGoogle Scholar
  120. Margiloff L et al (1998) Metal-catalyzed oxidation of immunoglobulin G impairs Fc receptor-mediated binding to macrophages. Free Radic Biol Med 25(7):780–785.  https://doi.org/10.1016/S0891-5849(98)00130-0 (9823543)CrossRefGoogle Scholar
  121. Marino D, Dunand C, Puppo A, Pauly N (2012) A burst of plant NADPH oxidases. Trends Plant Sci 17:9–15CrossRefGoogle Scholar
  122. Marnett LJ (1999) Lipid peroxidationd DNA damage by malondialdehyde. Mutat Res 424:83–95CrossRefGoogle Scholar
  123. Marshall A, Aalen RB, Audenaert D, Beeckman T, Broadley MR, Butenko MA, Caño-Delgado AI, de Vries S, Dresselhaus T, Felix G et al (2012) Tackling drought stress: receptor-like kinases present new approaches. Plant Cell 24:2262–2278CrossRefGoogle Scholar
  124. Mates JM, Sanchez-Jimenez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345CrossRefGoogle Scholar
  125. Matesanz N, Lafuente N, Azcutia V, Martin D, Cuadrado A, Nevado J et al (2007) Xanthine oxidase derived extracellular superoxide anions stimulate activator protein 1 activity and hypertrophy in human vascular smooth muscle via c-Jun N-terminal kinase and p38 mitogen-activated protein kinases. J Hypertens 25(3):609–618CrossRefGoogle Scholar
  126. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221CrossRefGoogle Scholar
  127. Matthay MA, Geiser T, Matalon S, Ischiropoulos H (1999) Oxidant-mediated lung injury in the acute respiratory distress syndrome. Crit Care Med 27:2028–2030CrossRefGoogle Scholar
  128. Mignolet-Spruyt L, Xu E, Idanheimo N, Hoeberichts FA, Muhlenbock P, Brosche M, Van Breusegem F, Kangasjarvi J (2016) Spreading the news: subcellular and organellar reactive oxygen species production and signalling. J Exp Bot 67:3831–3844CrossRefGoogle Scholar
  129. Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108CrossRefGoogle Scholar
  130. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107:15681–15686CrossRefGoogle Scholar
  131. Miller YI et al (2011) Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res 108(2):235–248.  https://doi.org/10.1161/CIRCRESAHA.110.223875 (21252151)CrossRefGoogle Scholar
  132. Millonig G, Ganzleben I, Peccerella T, Casanovas G, Brodziak-Jarosz L, Breitkopf-Heinlein K, Dick TP, Seitz HK, Muckenthaler MU, Mueller S (2012) Sustained submicromolar H2O2 levels induce hepcidin via signal transducer and activator of transcription 3 (STAT3). J Biol Chem 287:37472–37482CrossRefGoogle Scholar
  133. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410CrossRefGoogle Scholar
  134. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498CrossRefGoogle Scholar
  135. Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309CrossRefGoogle Scholar
  136. Miyata T et al (1998) Increased pentosidine, an advanced glycation end product, in plasma and synovial fluid from patients with rheumatoid arthritis and its relation with inflammatory markers. Biochem Biophys Res Commun 244(1):45–49.  https://doi.org/10.1006/bbrc.1998.8203 (9514872)CrossRefGoogle Scholar
  137. Mladenka P, Simunek T, Hubl M, Hrdina R (2006) The role of reactive oxygen and nitrogen species in cellular iron metabolism. Free Radic Res 40:263–272CrossRefGoogle Scholar
  138. Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ (2011) Reactive carbonyls are a major Th2-inducing damage associated molecular pattern generated by oxidative stress. J Immunol 187:1626–1633CrossRefGoogle Scholar
  139. Mok MY et al (2011) Systemic sclerosis is an independent risk factor for increased coronary artery calcium deposition. Arthritis Rheum 63(5):1387–1395.  https://doi.org/10.1002/art.30283 (21538320)CrossRefGoogle Scholar
  140. Montuschi P, Corradi M, Ciabattoni G, Nightingale J, Kharitonov SA, Barnes PJ (1999) Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 160:216–220CrossRefGoogle Scholar
  141. Morgan PE, Sturgess AD, Davies MJ (2005) Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis Rheum 52(7):2069–2079.  https://doi.org/10.1002/art.21130 (15986354)CrossRefGoogle Scholar
  142. Morgan PE, Sturgess AD, Davies MJ (2009) Evidence for chronically elevated serum protein oxidation in systemic lupus erythematosus patients. Free Radic Res 43(2):117–127.  https://doi.org/10.1080/10715760802623896 (19096973)CrossRefGoogle Scholar
  143. Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724CrossRefGoogle Scholar
  144. Munné-Bosch S, Queval G, Foyer CH (2013) The impact of global change factors on redox signaling underpinning stress tolerance. Plant Physiol 161:5–19CrossRefGoogle Scholar
  145. Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13CrossRefGoogle Scholar
  146. Nakamura H (2005) Thioredoxin and its related molecules: update 2005. Antioxid Redox Signal 7:823–828CrossRefGoogle Scholar
  147. Narayanan PK, Goodwin EH, Lehnert BE (1997) Alpha particles initiate biological production of superoxide anions and hydrogen peroxide in human cells. Cancer Res 57:3963–3971Google Scholar
  148. Narendra D, Kane LA, Hauser DN, Fearnley IM, Youle RJ (2010) P62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6:1090–1106CrossRefGoogle Scholar
  149. Niethammer P, Grabher C, Look AT, Mitchison TJ (2009) A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459:996–999CrossRefGoogle Scholar
  150. Nightingale JA, Rogers DF, Barnes PJ (1999) Effect of inhaled ozone on exhaled nitric oxide, pulmonary function, and induced sputum in normal and asthmatic subjects. Thorax 54(1061):1069Google Scholar
  151. Noctor G, Veljovic-Jovanovic SD, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Ann Bot (Lond) 89:841–850CrossRefGoogle Scholar
  152. Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, Rozenknop A et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11:45–51CrossRefGoogle Scholar
  153. O’Brien JA, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–779CrossRefGoogle Scholar
  154. Oude Ophuis RJ, Wijers M, Bennink MB, van de Loo FA, Fransen JA, Wieringa B et al (2009) A tail-anchored myotonic dystrophy protein kinase isoform induces perinuclear clustering of mitochondria, autophagy, and apoptosis. PLoS ONE 4:e8024CrossRefGoogle Scholar
  155. Pacher P, Beckman JS, Liaudet L (2007) Nitric oxide and peroxynitrite in health and disease. Physiol Rev 87(1):315–424CrossRefGoogle Scholar
  156. Pattison DI, Davies MJ (2005) Kinetic analysis of the role of histidine chloramines in hypochlorous acid mediated protein oxidation. Biochemistry 44(19):7378–7387.  https://doi.org/10.1021/bi0474665 (15882077)CrossRefGoogle Scholar
  157. Pendyala S, Natarajan V (2010) Redox regulation of Nox proteins. Respir Physiol Neurobiol 174:265–271CrossRefGoogle Scholar
  158. Peters MJ et al (2008) Relations between autoantibodies against oxidized low-density lipoprotein, inflammation, subclinical atherosclerosis, and cardiovascular disease in rheumatoid arthritis. J Rheumatol 35(8):1495–1499 (18597411)Google Scholar
  159. Pletjushkina OY et al (2005) Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Cell Death Differ 12:1442–1444CrossRefGoogle Scholar
  160. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL et al (2006) Free radical biology and medicine: it’s a gas, man! Am J Physiol Regul Integr Comp Physiol 291(3):R491–R511CrossRefGoogle Scholar
  161. Puertollano MA, Puertollano E, de Cienfuegos GA, de Pablo MA (2011) Dietary antioxidants: immunity and host defense. Curr Top Med Chem 11:1752–1766CrossRefGoogle Scholar
  162. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J (2011) Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc Natl Acad Sci USA 108:10190–10195CrossRefGoogle Scholar
  163. Regulski M et al (2004) Essential function of nitric oxide synthase in Drosophila. Curr Biol 14:R881–R882CrossRefGoogle Scholar
  164. Roberts DJ, Tan-Sah VP, Ding EY, Smith JM, Miyamoto S (2014) Hexokinase-II positively regulates glucose starvation-induced autophagy through TORC1 inhibition. Mol Cell 53:521–533CrossRefGoogle Scholar
  165. Rodriguez-Garcia J, Requena JR, Rodriguez-Segade S (1998) Increased concentrations of serum pentosidine in rheumatoid arthritis. Clin Chem 44(2):250–255 (9474020)Google Scholar
  166. Ryan BJ, Eggleton P (2014) Detection and characterization of autoantibodies against modified self-proteins in SLE sera after exposure to reactive oxygen and nitrogen species. Methods Mol Biol (Clifton, NJ) 1134:63–171.  https://doi.org/10.1007/978-1-4939-0326-912 (24497361)CrossRefGoogle Scholar
  167. Rybicka JM, Balce DR, Khan MF, Krohn RM, Yates RM (2010) NADPH oxidase activity controls phagosomal proteolysis in macrophages through modulation of the luminal redox environment of phagosomes. Proc Natl Acad Sci USA 107:10496–10501CrossRefGoogle Scholar
  168. Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD (2010) The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J. 4:302–312CrossRefGoogle Scholar
  169. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454:232–235CrossRefGoogle Scholar
  170. Saran M, Bors W (1989) Oxygen radicals acting as chemical messengers: a hypothesis. Free Radic Res Commun 7:213–220CrossRefGoogle Scholar
  171. Schellekens GA et al (1998) Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest 101(1):273–281.  https://doi.org/10.1172/JCI1316 (9421490)CrossRefGoogle Scholar
  172. Schellekens GA et al (2000) The diagnostic properties of rheumatoid arthritis anti-bodies recognizing a cyclic citrullinated peptide. Arthritis Rheum 43(1):155–163.  https://doi.org/10.1002/1529-0131(200001)43:1%3c155:AID-ANR20%3e3.0.CO;2-3 (10643712)CrossRefGoogle Scholar
  173. Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427CrossRefGoogle Scholar
  174. Schrader M, Fahimi HD (2004) Mammalian peroxisomes and reactive oxygen species. Histochem Cell Biol 122(4):383–393CrossRefGoogle Scholar
  175. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W, Dorsey FC et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505CrossRefGoogle Scholar
  176. Scinocca M et al (2014) Antihomocitrullinated fibrinogen antibodies are specific to rheumatoid arthritis and frequently bind citrullinated proteins/ peptides. J Rheumatol 41(2):270–279.  https://doi.org/10.3899/jrheum.130742 (24429169)CrossRefGoogle Scholar
  177. Scofield RH et al (2005) Modification of lupus-associated 60-kDa Ro protein with the lipid oxidation product 4-hydroxy-2-nonenal increases antigenicity and facilitates epitope spreading. Free Radic Biol Med 38(6):719–728.  https://doi.org/10.1016/j.freeradbiomed.2004.11.001 (15721982)CrossRefGoogle Scholar
  178. Shaw PX et al (2000) Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 105(12):1731–1740.  https://doi.org/10.1172/JCI8472 (10862788)CrossRefGoogle Scholar
  179. Shi J et al (2011) Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc Natl Acad Sci USA 108(42):17372–17377.  https://doi.org/10.1073/pnas.1114465108 (21987802)CrossRefGoogle Scholar
  180. Shin DM, Jeon BY, Lee HM, Jin HS, Yuk JM, Song CH, Lee SH, Lee ZW, Cho SN, Kim JM, Friedman RL, Jo EK (2010) Mycobacterium tuberculosis eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog 6:e1001230CrossRefGoogle Scholar
  181. Simat TJ, Steinhart H (1998) Oxidation of Free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46(2):490–498.  https://doi.org/10.1021/jf970818c (10554268)CrossRefGoogle Scholar
  182. Skaggs BJ, Hahn BH, McMahon M (2012) Accelerated atherosclerosis in patients with SLE: mechanisms and management. Nat Rev Rheumatol 8(4):214–223.  https://doi.org/10.1038/nrrheum.2012.14 (22331061)CrossRefGoogle Scholar
  183. Slater TF (1984) Free-radical mechanisms in tissue injury. Biochem J 222(1):1–15CrossRefGoogle Scholar
  184. Smirnoff N (1998) Curr Opin Biotechnol 9:214–219CrossRefGoogle Scholar
  185. Soberman RJ, Christmas P (2003) The organization and consequences of eicosanoid signaling. J Clin Invest 111:1107–1113CrossRefGoogle Scholar
  186. Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112CrossRefGoogle Scholar
  187. Stadtman ER, Levine RL (2000) Protein oxidation. Ann N Y Acad Sci 899(1):191–208CrossRefGoogle Scholar
  188. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5(5):577–582CrossRefGoogle Scholar
  189. Steinwand BJ, Kieber JJ (2010) The role of receptor-like kinases in regulating cell wall function. Plant Physiol 153:479–484CrossRefGoogle Scholar
  190. Stohs SJ, Bagchi D (1995a) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336CrossRefGoogle Scholar
  191. Stohs SJ, Bagchi D (1995b) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18(2):321–336CrossRefGoogle Scholar
  192. Strappazzon F, Nazio F, Corrado M, Cianfanelli V, Romagnoli A, Fimia GM et al (2015) AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1. Cell Death Differ 22:419–432CrossRefGoogle Scholar
  193. Svenungsson E et al (2001) Risk factors for cardiovascular disease in systemic lupus erythematosus. Circulation 104(16):1887–1893.  https://doi.org/10.1161/hc4101.097518 (11602489)CrossRefGoogle Scholar
  194. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339:161–166CrossRefGoogle Scholar
  195. Szabo C (1988) Role of nitric oxide in endotoxic shock. An overview of recent advances. Ann N Y Acad Sci 851:422–425CrossRefGoogle Scholar
  196. Szabo C, Ischiropoulos H, Radi R (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat Rev Drug Discov 6(8):662–680CrossRefGoogle Scholar
  197. Tang H, Cao W, Kasturi SP, Ravindran R, Nakaya HI, Kundu K, Murthy N, Kepler TB, Malissen B, Pulendran B (2010) The T helper type 2 response to cysteine proteases requires dendritic cell-basophil cooperation via ROSmediated signaling. Nat Immunol 11:608–617CrossRefGoogle Scholar
  198. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279:L1005–L1028CrossRefGoogle Scholar
  199. Tilton C, Clippinger AJ, Maguire T, Alwine JC (2011) Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol 85:12585–12593CrossRefGoogle Scholar
  200. Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signaling in response to pathogens. Plant Physiol 141:373–378CrossRefGoogle Scholar
  201. Tsimikas S et al (2007) Relationship of IgG and IgM autoantibodies to oxidized low density lipoprotein with coronary artery disease and cardiovascular events. J Lipid Res 48(2):425–433 (17093289)CrossRefGoogle Scholar
  202. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344CrossRefGoogle Scholar
  203. Tuttle SW, Varnes ME, Mitchell JB, Biaglow JE (1992) Sensitivity to chemical oxidants and radiation in CHO cell lines deficient in oxidative pentose cycle activity. Int J Radiat Oncol Biol Phys 22:671–675CrossRefGoogle Scholar
  204. Uchida K, Stadtman ER (1992) Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc Natl Acad Sci USA 89(10):4544–4548.  https://doi.org/10.1073/pnas.89.10.4544 (1584790)CrossRefGoogle Scholar
  205. Ueno N, Wilson ME (2012) Receptor-mediated phagocytosis of Leishmania: implications for intracellular survival. Trends Parasitol 28:335–344CrossRefGoogle Scholar
  206. Uesugi M, Yoshida K, Jasin HE (2000) Inflammatory properties of IgG modified by oxygen radicals and peroxynitrite. J Immunol (Baltimore, Md.: 1950) 165(11):6532–6537.  https://doi.org/10.4049/jimmunol.165.11.6532 (11086095)CrossRefGoogle Scholar
  207. Vaahtera L, Brosche M, Wrzaczek M, Kangasjarvi J (2014) Specificity in ROS signaling and transcript signatures. Antioxid Redox Signal 21:1422–1441CrossRefGoogle Scholar
  208. Vadlamudi RK, Joung I, Strominger JL, Shin J (1996) p62, a phosphotyrosine-independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-binding proteins. J Biol Chem 271:20235–20237CrossRefGoogle Scholar
  209. Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266(1–2):37–56CrossRefGoogle Scholar
  210. Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12(10):1161–1208CrossRefGoogle Scholar
  211. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40CrossRefGoogle Scholar
  212. van Dalen CJ, Winterbourn CC, Senthilmohan R, Kettle AJ (2000) Nitrite as a substrate and inhibitor of myeloperoxidase. Implications for nitration and hypochlorous acid production at sites of inflammation. J Biol Chem 275:11638–11644CrossRefGoogle Scholar
  213. Victor VM, Rocha M, De la Fuente M (2004) Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 4:327–347CrossRefGoogle Scholar
  214. Vitek MP et al (1994) Advanced glycation end products contribute to amyloidosis in Alzheimer disease. Proc Natl Acad Sci USA 91(11):4766–4770.  https://doi.org/10.1073/pnas.91.11.4766 (8197133)CrossRefGoogle Scholar
  215. Vollmers JP, Brändlein S (2002) Nature’s best weapons to fight cancer. Revival of human monoclonal IgM antibodies. Hum Antibodies 11(4):131–142 (12775893)CrossRefGoogle Scholar
  216. Voothuluru P, Yamaguchi M, Zhu J, Cho IJ, Oliver MJ, Simmonds J, Sharp RE (2011) Cell wall proteomics and apoplastic ROS: novel insights into root growth adaptation to water stress [abstract no. P13018]. In: 2011 Annual meeting of the American Society of Plant Biologists, August 6–10, 2011, Minneapolis, MN. American Society of Plant Biologists, Rockville, MD, p 518Google Scholar
  217. Waghray M et al (2005) Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J 19:854–856CrossRefGoogle Scholar
  218. Wanders RJ, Waterham HR (2006) Biochemistry of mammalian peroxisomes revisited. Annu Rev Biochem 75:295–332CrossRefGoogle Scholar
  219. Wang MY, Dhingra K, Hittelman WN, Liehr JG, deAndrade M, Li DH (1996) Lipid peroxidation-induced putative malondialdehyde–DNA adducts in human breast tissues. Cancer Epidemiol Biomarkers Prev 5:705–710Google Scholar
  220. Wang Z et al (2007) Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat Med 13(10):1176–1184.  https://doi.org/10.1038/nm1637 (17828273)CrossRefGoogle Scholar
  221. Wang G et al (2010) Markers of oxidative and nitrosative stress in systemic lupus erythematosus: correlation with disease activity. Arthritis Rheum 62(7):2064–2072 (20201076)Google Scholar
  222. Wang J, Ren Z, Xu Y, Xiao S, Meydani SN, Wu D (2012a) Epigallocatechin-3-gallate ameliorates experimental autoimmune encephalomyelitis by altering balance among CD4+ T-cell subsets. Am J Pathol 180:221–234CrossRefGoogle Scholar
  223. Wang RC, Wei Y, An Z, Zou Z, Xiao G, Bhagat G et al (2012b) Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–959CrossRefGoogle Scholar
  224. Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S et al (2000) Thioredoxin nuclear translocation and interaction with redox factor-1 activates the AP-1 transcription factor in response to ionizing radiation. Cancer Res 60:6688–6695Google Scholar
  225. Whiteman M, Jenner A, Halliwell B (1997) Hypochlorous acid-induced base modifications in isolated calf thymus DNA. Chem Res Toxicol 10:1240–1246CrossRefGoogle Scholar
  226. Wood LG, Fitzgerald DA, Gibson PG, Cooper DM, Garg ML (2000) Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 35:967–974CrossRefGoogle Scholar
  227. Wood ZA et al (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem Sci 28(1):32–40.  https://doi.org/10.1016/S0968-0004(02)00003-8 (12517450)CrossRefGoogle Scholar
  228. Wu G et al (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492CrossRefGoogle Scholar
  229. Wu W, Hsu Y-MS, Bi L, Songyang Z, Lin X (2009) CARD9 facilitates microbe-elicited production of reactive oxygen species by regulating the LyGDI-Rac1 complex. Nat Immunol 10:1208–1214CrossRefGoogle Scholar
  230. Yokoya A, Cunniffe SM, O’Neill P (2002) Effect of hydration on the induction of strand breaks and base lesions in plasmid DNA films by gammaradiation. J Am Chem Soc 124:8859–8866CrossRefGoogle Scholar
  231. Yoo SK, Starnes TW, Deng Q, Huttenlocher A (2011) Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. Nature 480:109–112CrossRefGoogle Scholar
  232. Yoon JH, An SH, Kyeong IG, Lee MS, Kwon SC, Kang JH (2011) Oxidative modification of ferritin induced by hydrogen peroxide. BMB Rep 44:165–169CrossRefGoogle Scholar
  233. Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14CrossRefGoogle Scholar
  234. Yu BP (1994) Cellular defenses against damage from reactive oxygen species. Physiol Rev 74(1):139–162CrossRefGoogle Scholar
  235. Zangar RC, Davydov DR, Verma S (2004) Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol Appl Pharmacol 199(3):316–331CrossRefGoogle Scholar
  236. Zhang J, Ney PA (2009) Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16:939–946CrossRefGoogle Scholar
  237. Zhang J, Jin B, Li L, Block ER, Patel JM (2005) Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am J Physiol Cell Physiol 288(4):C840–C849CrossRefGoogle Scholar
  238. Zhou F, Zhang Z, Gregersen PL, Mikkelsen JD, de Neergaard E, Collinge DB, Thordal-Christensen H (1998) Molecular characterization of the oxalate oxidase involved in the response of barley to the powdery mildew fungus. Plant Physiol 117:33–41CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Physical Chemistry and Nanoscience, Department of Chemistry, Faculty of ScienceAl Baha UniversityBaljurashiSaudi Arabia

Personalised recommendations