Advertisement

Analysis of 3-D MPPT for RF Harvesting

  • Michele CaselliEmail author
  • Andrea Boni
Conference paper
  • 10 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 627)

Abstract

We discuss the issues arising in the design of RF harvesters for ultra low-power environments. The 3-D MPPT approach in [1] is the only one taking into account the presence of variable output load. Its architecture and performance are compared with other state-of-the-art MPPT implementations.

References

  1. 1.
    Caselli M, Boni A (2019) 3-D Maximum power point searching and tracking for ultra low power RF energy harvesters. In: IEEE SMACDGoogle Scholar
  2. 2.
    Zeng Z et al (2016) A WLAN 2.4-GHz RF energy harvesting system with reconfigurable rectifier for wireless sensor network. In: IEEE ISCASGoogle Scholar
  3. 3.
    Stoopman M et al (2013) Self-calibrating RF energy harvester generating 1 V at −26.3 dBm. In: IEEE symposium on VLSIGoogle Scholar
  4. 4.
    Wang SH et al (2018) The design of CMOS 13.56 MHz high efficiency 1x/3x 1.99 V/6.29 V active rectifier for implantable neuromodulation systems. In: IEEE ISCASGoogle Scholar
  5. 5.
    Gosselin A et al (2017) A CMOS automatic tuning system to maximize remote powering efficiency. In: IEEE ISCASGoogle Scholar
  6. 6.
    Abouzied MA et al (2017) A fully integrated reconfigurable self-startup RF energy-harvesting system with storage capability. IEEE J Solid-State Circ 52(3)Google Scholar
  7. 7.
    Bakhtiar AS et al (2010) An RF power harvesting system with input-tuning for long-range RFID tags. In: IEEE ISCASGoogle Scholar
  8. 8.
    Xia L et al (2014) 0.56 V, −20 dBm RF-powered, multi-node wireless body area network system-on-a-chip with harvesting-efficiency tracking loop. IEEE J Solid-State Circ 49(6)Google Scholar
  9. 9.
    Hua X, Harjani R (2018) A 5 μW–5mW input power range, 0–3.5 V output voltage range RF energy harvester with power-estimator-enhanced MPPT controller. In: 2018 IEEE custom integrated circuits conference (CICC)Google Scholar
  10. 10.
    Martins GC, Serdijn WA (2018) An RF energy harvester with MPPT operating across a wide range of available input power. In: 2018 IEEE international symposium on circuits and systems (ISCAS)Google Scholar
  11. 11.
    Nakamoto H et al A passive UHF RF identification CMOS tag IC using ferroelectric RAM in 0.35–μm technology. IEEE J Solid-State Circ 42(1)Google Scholar
  12. 12.
    Wang J et al (2017) 900 MHz RF energy harvesting system in 40 nm CMOS technology with efficiency peaking at 47% and higher than 30% over a 22 dB wide input power range. In: ESSCIRC 2017-43rd IEEE European solid state circuits conferenceGoogle Scholar
  13. 13.
  14. 14.
    Caselli M et al (2019) Design and analysis of an integrated RF energy harvester for ultra low-power environments. Int J Circ Theor Appl 47(7)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Engineering and ArchitectureUniversity of ParmaParmaItaly

Personalised recommendations