Oligodendrocyte Progenitor Cells in the Tumor Microenvironment

  • Takuichiro HideEmail author
  • Yoshihiro Komohara
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1234)


Glioblastoma (GBM) develops from adult brain white matter and is the most common and lethal primary brain tumor, characterized by rapid growth and invasion. GBM tumors frequently spread into the contralateral hemisphere, including in the beginning of tumor development. However, after complete resection of the tumor mass and chemo-radiotherapy, GBM commonly recurs around the tumor removal site, suggesting that the microenvironment at the tumor border provides therapeutic resistance to GBM cells. To improve patient prognosis, understanding the microenvironment at the tumor border is critical. Several microRNAs (miRNAs) show higher expression at the tumor border, with the top three involved in oligodendrocyte differentiation. Oligodendrocyte progenitor cells (OPCs) may induce stemness and chemo-radioresistance in GBM cells, providing a supportive function to promote GBM. This review describes important features of OPCs and insights into the “border niche,” a unique microenvironment that allows GBM cells to survive and recur at the tumor border.


Border niche Glioma-associated oligodendrocyte Oligodendrocyte progenitor cell Oligodendrocyte Microenvironment Glioblastoma Recurrence Neuron Microglia Macrophage microRNA Stemness Chemo-radioresistance Invasion Niche 


  1. 1.
    Allen NJ, Lyons DA (2018) Glia as architects of central nervous system formation and function. Science 362:181–185PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Arcuri C, Fioretti B, Bianchi R, Mecca C, Tubaro C, Beccari T, Franciolini F, Giambanco I, Donato R (2017) Microglia-glioma cross-talk: a two way approach to new strategies against glioma. Front Biosci (Landmark Ed) 22:268–309CrossRefGoogle Scholar
  3. 3.
    Barca-Mayo O, Lu QR (2012) Fine-tuning oligodendrocyte development by microRNAs. Front Neurosci 6:13PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bardehle S, Kruger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert HJ, Theis FJ, Meyer-Luehmann M, Bechmann I, Dimou L, Gotz M (2013) Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci 16:580–586PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Bercury KK, Macklin WB (2015) Dynamics and mechanisms of CNS myelination. Dev Cell 32:447–458PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bergles DE, Roberts JD, Somogyi P, Jahr CE (2000) Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature 405:187–191PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Birey F, Kokkosis AG, Aguirre A (2017) Oligodendroglia-lineage cells in brain plasticity, homeostasis and psychiatric disorders. Curr Opin Neurobiol 47:93–103PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Brandao M, Simon T, Critchley G, Giamas G (2019) Astrocytes, the rising stars of the glioblastoma microenvironment. Glia 67(5):779–790PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Brandes AA, Tosoni A, Franceschi E, Sotti G, Frezza G, Amista P, Morandi L, Spagnolli F, Ermani M (2009) Recurrence pattern after temozolomide concomitant with and adjuvant to radiotherapy in newly diagnosed patients with glioblastoma: correlation with MGMT promoter methylation status. J Clin Oncol 27:1275–1279PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S, Martino G, Schwartz M (2006) Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 31:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Chen Z, Feng X, Herting CJ, Garcia VA, Nie K, Pong WW, Rasmussen R, Dwivedi B, Seby S, Wolf SA, Gutmann DH, Hambardzumyan D (2017) Cellular and molecular identity of tumor-associated macrophages in glioblastoma. Cancer Res 77:2266–2278PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Chen Z, Hambardzumyan D (2018) Immune microenvironment in glioblastoma subtypes. Front Immunol 9:1004PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Diksin M, Smith SJ, Rahman R (2017) The molecular and phenotypic basis of the glioma invasive perivascular niche. Int J Mol Sci 18Google Scholar
  15. 15.
    Dimou L, Gallo V (2015) NG2-glia and their functions in the central nervous system. Glia 63:1429–1451PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA (2010) Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65:597–611PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Elbaz B, Popko B (2019) Molecular control of oligodendrocyte development. Trends Neurosci 42:263–277PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Fernandez-Castaneda A, Gaultier A (2016) Adult oligodendrocyte progenitor cells – multifaceted regulators of the CNS in health and disease. Brain Behav Immun 57:1–7PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Fidoamore A, Cristiano L, Antonosante A, D'angelo M, Di Giacomo E, Astarita C, Giordano A, Ippoliti R, Benedetti E, Cimini A (2016) Glioblastoma stem cells microenvironment: the paracrine roles of the niche in drug and radioresistance. Stem Cells Int 2016:6809105PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Foster AY, Bujalka H, Emery B (2019) Axoglial interactions in myelin plasticity: evaluating the relationship between neuronal activity and oligodendrocyte dynamics. Glia 67:2038PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Galvao RP, Kasina A, McNeill RS, Harbin JE, Foreman O, Verhaak RG, Nishiyama A, Miller CR, Zong H (2014) Transformation of quiescent adult oligodendrocyte precursor cells into malignant glioma through a multistep reactivation process. Proc Natl Acad Sci U S A 111:E4214–E4223PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Guan X, Hasan MN, Maniar S, Jia W, Sun D (2018) Reactive astrocytes in glioblastoma multiforme. Mol Neurobiol 55:6927–6938PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Habermacher C, Angulo MC, Benamer N (2019) Glutamate versus GABA in neuron-oligodendroglia communication. Glia 67:2092PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Hide T, Komohara Y, Miyasato Y, Nakamura H, Makino K, Takeya M, Kuratsu JI, Mukasa A, Yano S (2018) Oligodendrocyte progenitor cells and macrophages/microglia produce glioma stem cell niches at the tumor border. EBioMedicine 30:94–104PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hide T, Makino K, Nakamura H, Yano S, Anai S, Takezaki T, Kuroda J, Shinojima N, Ueda Y, Kuratsu J (2013) New treatment strategies to eradicate cancer stem cells and niches in glioblastoma. Neurol Med Chir (Tokyo) 53:764–772CrossRefGoogle Scholar
  28. 28.
    Hide T, Shibahara I, Kumabe T (2019) Novel concept of the border niche: glioblastoma cells use oligodendrocytes progenitor cells (GAOs) and microglia to acquire stem cell-like features. Brain Tumor Pathol 36:63–73PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T (2009) Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res 69:7953–7959PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T (2011) Combination of a ptgs2 inhibitor and an epidermal growth factor receptor-signaling inhibitor prevents tumorigenesis of oligodendrocyte lineage-derived glioma-initiating cells. Stem Cells 29:590–599PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Ho IAW, Shim WSN (2017) Contribution of the microenvironmental niche to glioblastoma heterogeneity. Biomed Res Int 2017:9634172PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hoeffel G, Ginhoux F (2018) Fetal monocytes and the origins of tissue-resident macrophages. Cell Immunol 330:5–15PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Hughes EG, Kang SH, Fukaya M, Bergles DE (2013) Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci 16:668–676PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ishii A, Kimura T, Sadahiro H, Kawano H, Takubo K, Suzuki M, Ikeda E (2016) Histological characterization of the tumorigenic "Peri-necrotic niche" harboring quiescent stem-like tumor cells in glioblastoma. PLoS One 11:e0147366PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002) Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat Med 8:971–978PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Jahani-Asl A, Yin H, Soleimani VD, Haque T, Luchman HA, Chang NC, Sincennes MC, Puram SV, Scott AM, Lorimer IA, Perkins TJ, Ligon KL, Weiss S, Rudnicki MA, Bonni A (2016) Control of glioblastoma tumorigenesis by feed-forward cytokine signaling. Nat Neurosci 19:798–806PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    John Lin CC, Yu K, Hatcher A, Huang TW, Lee HK, Carlson J, Weston MC, Chen F, Zhang Y, Zhu W, Mohila CA, Ahmed N, Patel AJ, Arenkiel BR, Noebels JL, Creighton CJ, Deneen B (2017) Identification of diverse astrocyte populations and their malignant analogs. Nat Neurosci 20:396–405PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kaller MS, Lazari A, Blanco-Duque C, Sampaio-Baptista C, Johansen-Berg H (2017) Myelin plasticity and behaviour-connecting the dots. Curr Opin Neurobiol 47:86–92PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kaneko S, Nakatani Y, Takezaki T, Hide T, Yamashita D, Ohtsu N, Ohnishi T, Terasaka S, Houkin K, Kondo T (2015) Ceacam1L modulates STAT3 signaling to control the proliferation of glioblastoma-initiating cells. Cancer Res 75:4224–4234PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Katz AM, Amankulor NM, Pitter K, Helmy K, Squatrito M, Holland EC (2012) Astrocyte-specific expression patterns associated with the PDGF-induced glioma microenvironment. PLoS One 7:e32453PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kawashima T, Yashiro M, Kasashima H, Terakawa Y, Uda T, Nakajo K, Umaba R, Tanoue Y, Tamrakar S, Ohata K (2019) Oligodendrocytes up-regulate the invasive activity of glioblastoma cells via the angiopoietin-2 signaling pathway. Anticancer Res 39:577–584PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Kohlhapp FJ, Mitra AK, Lengyel E, Peter ME (2015) MicroRNAs as mediators and communicators between cancer cells and the tumor microenvironment. Oncogene 34:5857PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Komohara Y, Jinushi M, Takeya M (2014) Clinical significance of macrophage heterogeneity in human malignant tumors. Cancer Sci 105:1–8PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kros JM, Mustafa DM, Dekker LJ, Sillevis S, A P, Luider TM, Zheng PP (2015) Circulating glioma biomarkers. Neuro-Oncology 17:343–360PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kula B, Chen TJ, Kukley M (2019) Glutamatergic signaling between neurons and oligodendrocyte lineage cells: is it synaptic or non-synaptic? Glia 67:2071PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Kuspert M, Wegner M (2016) SomethiNG 2 talk about-transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 1638:167–182PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Lathia JD, Heddleston JM, Venere M, Rich JN (2011) Deadly teamwork: neural cancer stem cells and the tumor microenvironment. Cell Stem Cell 8:482–485PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Leblond MM, Peres EA, Helaine C, Gerault AN, Moulin D, Anfray C, Divoux D, Petit E, Bernaudin M, Valable S (2017) M2 macrophages are more resistant than M1 macrophages following radiation therapy in the context of glioblastoma. Oncotarget 8:72597–72612PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Li C, Sun J, Xiang Q, Liang Y, Zhao N, Zhang Z, Liu Q, Cui Y (2016) Prognostic role of microRNA-21 expression in gliomas: a meta-analysis. J Neurooncol 130:11PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Li Q, Brus-Ramer M, Martin JH, McDonald JW (2010) Electrical stimulation of the medullary pyramid promotes proliferation and differentiation of oligodendrocyte progenitor cells in the corticospinal tract of the adult rat. Neurosci Lett 479:128–133PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L, Zong H (2011) Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell 146:209–221PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Liu H, Wang L, Geng Z, Zhu Q, Song Z, Chang R, Lv H (2016) A voxel-based morphometric study of age- and sex-related changes in white matter volume in the normal aging brain. Neuropsychiatr Dis Treat 12:453–465PubMedPubMedCentralGoogle Scholar
  53. 53.
    Liu H, Yang Y, Xia Y, Zhu W, Leak RK, Wei Z, Wang J, Hu X (2017) Aging of cerebral white matter. Ageing Res Rev 34:64–76PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Lundgaard I, Osorio MJ, Kress BT, Sanggaard S, Nedergaard M (2014) White matter astrocytes in health and disease. Neuroscience 276:161–173PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Marques S, Zeisel A, Codeluppi S, Van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA, Gyllborg D, Munoz Manchado A, La Manno G, Lonnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    McKenzie IA, Ohayon D, Li H, De Faria JP, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Miron VE (2017) Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J Leukoc Biol 101:1103–1108PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, Bujalka H, Gundlach AL, Richards LJ, Kilpatrick TJ, Merson TD, Emery B (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9:306PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ (2011) How factors secreted from astrocytes impact myelin repair. J Neurosci Res 89:13–21PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Nazari B, Soleimani M, Ebrahimi-Barough S, Enderami SE, Kazemi M, Negahdari B, Sadroddiny E, Ai J (2018) Overexpression of miR-219 promotes differentiation of human induced pluripotent stem cells into pre-oligodendrocyte. J Chem Neuroanat 91:8–16PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Olivares R, Montiel J, Aboitiz F (2001) Species differences and similarities in the fine structure of the mammalian corpus callosum. Brain Behav Evol 57:98–105PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J (2014) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-Oncology 16(Suppl 4):iv1–i63PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, Cahill DP, Nahed BV, Curry WT, Martuza RL, Louis DN, Rozenblatt-Rosen O, Suva ML, Regev A, Bernstein BE (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Quail DF, Joyce JA (2017) The microenvironmental landscape of brain tumors. Cancer Cell 31:326–341PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Roesch S, Rapp C, Dettling S, Herold-Mende C (2018) When immune cells turn bad-tumor-associated microglia/macrophages in glioma. Int J Mol Sci 19PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Schaub C, Kebir S, Junold N, Hattingen E, Schafer N, Steinbach JP, Weyerbrock A, Hau P, Goldbrunner R, Niessen M, Mack F, Stuplich M, Tzaridis T, Bahr O, Kortmann RD, Schlegel U, Schmidt-Graf F, Rohde V, Braun C, Hanel M, Sabel M, Gerlach R, Krex D, Belka C, Vatter H, Proescholdt M, Herrlinger U, Glas M (2018) Tumor growth patterns of MGMT-non-methylated glioblastoma in the randomized GLARIUS trial. J Cancer Res Clin Oncol 144:1581–1589PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Schiffer D, Annovazzi L, Casalone C, Corona C, Mellai M (2018) Glioblastoma: microenvironment and niche concept. Cancers (Basel) 11Google Scholar
  68. 68.
    Schiffer D, Mellai M, Bovio E, Bisogno I, Casalone C, Annovazzi L (2018) Glioblastoma niches: from the concept to the phenotypical reality. Neurol Sci 39:1161–1168PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shigemoto-Mogami Y, Hoshikawa K, Goldman JE, Sekino Y, Sato K (2014) Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J Neurosci 34:2231–2243PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Silver DJ, Lathia JD (2018) Revealing the glioma cancer stem cell interactome, one niche at a time. J Pathol 244:260–264PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Snuderl M, Fazlollahi L, Le LP, Nitta M, Zhelyazkova BH, Davidson CJ, Akhavanfard S, Cahill DP, Aldape KD, Betensky RA, Louis DN, Iafrate AJ (2011) Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. Cancer Cell 20:810–817PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Spitzer SO, Sitnikov S, Kamen Y, Evans KA, Kronenberg-Versteeg D, Dietmann S, De Faria O Jr, Agathou S, Karadottir RT (2019) Oligodendrocyte progenitor cells become regionally diverse and heterogeneous with age. Neuron 101:459–471.e5PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Stupp R, Hegi ME, Mason WP, Van Den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K, Hau P, Brandes AA, Gijtenbeek J, Marosi C, Vecht CJ, Mokhtari K, Wesseling P, Villa S, Eisenhauer E, Gorlia T, Weller M, Lacombe D, Cairncross JG, Mirimanoff RO, European Organisation for Research and Treatment of Cancer Brain Tumour and Radiation Oncology Groups; National Cancer Institute of Canada Clinical Trials Group (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J, Phillips J, Siu J, Lim DA, Vandenberg S, Stallcup W, Berger MS, Bergers G, Weiss WA, Petritsch C (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20:328–340PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Thion MS, Ginhoux F, Garel S (2018) Microglia and early brain development: an intimate journey. Science 362:185–189PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tomassy GS, Berger DR, Chen HH, Kasthuri N, Hayworth KJ, Vercelli A, Seung HS, Lichtman JW, Arlotta P (2014) Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science 344:319–324PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Korber C, Kardorff M, Ratliff M, Xie R, Horstmann H, Messer M, Paik SP, Knabbe J, Sahm F, Kurz FT, Acikgoz AA, Herrmannsdorfer F, Agarwal A, Bergles DE, Chalmers A, Miletic H, Turcan S, Mawrin C, Hanggi D, Liu HK, Wick W, Winkler F, Kuner T (2019) Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature 573:532PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, Woo PJ, Malenka RC, Vogel H, Bredel M, Mallick P, Monje M (2015) Neuronal activity promotes glioma growth through neuroligin-3 secretion. Cell 161:803–816PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, Woo PJ, Taylor KR, Agarwal A, Regev A, Brang D, Vogel H, Hervey-Jumper S, Bergles DE, Suva ML, Malenka RC, Monje M (2019) Electrical and synaptic integration of glioma into neural circuits. Nature 573(7775):539–545PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Venkatesh HS, Tam LT, Woo PJ, Lennon J, Nagaraja S, Gillespie SM, Ni J, Duveau DY, Morris PJ, Zhao JJ, Thomas CJ, Monje M (2017) Targeting neuronal activity-regulated neuroligin-3 dependency in high-grade glioma. Nature 549:533–537PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Vigano F, Mobius W, Gotz M, Dimou L (2013) Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat Neurosci 16:1370–1372PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Von Bartheld CS, Bahney J, Herculano-Houzel S (2016) The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 524:3865–3895PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Wang X, Prager BC, Wu Q, Kim LJY, Gimple RC, Shi Y, Yang K, Morton AR, Zhou W, Zhu Z, Obara EAA, Miller TE, Song A, Lai S, Hubert CG, Jin X, Huang Z, Fang X, Dixit D, Tao W, Zhai K, Chen C, Dong Z, Zhang G, Dombrowski SM, Hamerlik P, Mack SC, Bao S, Rich JN (2018) Reciprocal signaling between glioblastoma stem cells and differentiated tumor cells promotes malignant progression. Cell Stem Cell 22:514–528.e5PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Wegener A, Deboux C, Bachelin C, Frah M, Kerninon C, Seilhean D, Weider M, Wegner M, Nait-Oumesmar B (2015) Gain of Olig2 function in oligodendrocyte progenitors promotes remyelination. Brain 138:120–135PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Wilson CB (1992) Glioblastoma: the past, the present, and the future. Clin Neurosurg 38:32–48PubMedPubMedCentralGoogle Scholar
  87. 87.
    Yeung MS, Zdunek S, Bergmann O, Bernard S, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Brundin L, Druid H, Frisen J (2014) Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159:766–774PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD (2013) Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77:873–885PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhao X, He X, Han X, Yu Y, Ye F, Chen Y, Hoang T, Xu X, Mi QS, Xin M, Wang F, Appel B, Lu QR (2010) MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65:612–626PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of NeurosurgeryKitasato University School of MedicineKanagawaJapan
  2. 2.Department of Cell PathologyGraduate School of Life Sciences, Kumamoto UniversityKumamotoJapan

Personalised recommendations