Advertisement

Endothelial Cells in the Tumor Microenvironment

  • Katarzyna SobierajskaEmail author
  • Wojciech Michal Ciszewski
  • Izabela Sacewicz-Hofman
  • Jolanta Niewiarowska
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1234)

Abstract

Angiogenesis is a critical process required for tumor progression. Newly formed blood vessels provide nutrition and oxygen to the tumor contributing to its growth and development. However, endothelium also plays other functions that promote tumor metastasis. It is involved in intravasation, which allows invasive cancer cells to translocate into the blood vessel lumen. This phenomenon is an important stage for cancer metastasis. Besides direct association with cancer development, endothelial cells are one of the main sources of cancer-associated fibroblasts (CAFs). The heterogeneous group of CAFs is the main inductor of migration and invasion abilities of cancer cells. Therefore, the endothelium is also indirectly responsible for metastasis. Considering the above, the endothelium is one of the important targets of anticancer therapy. In the chapter, we will present mechanisms regulating endothelial function, dependent on cancer and cancer niche cells. We will focus on possibilities of suppressing pro-metastatic endothelial functions, applied in anti-cancer therapies.

Keywords

Endothelial cells Cancer development Tumor endothelial cells Cancer microenvironment Cancer niche Sprouting Metastasis CAFs Microvessels Tip cells Tumor angiogenesis VEGF Hypoxia Endothelial-mesenchymal transition TGF-β 

References

  1. 1.
    Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478PubMedCrossRefGoogle Scholar
  2. 2.
    Aird CW (2007) Phenotypic heterogeneity of the endothelium. I. Structure, function, and mechanisms. Circ Res 100:158–173PubMedCrossRefGoogle Scholar
  3. 3.
    Aird CW (2012) Endothelial cell heterogeneity. Cold Spring Harb Perspect Med 2:a006429PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Aisagbonhi O, Rai M, Ryzhov S et al (2011) Experimental myocardial infarction triggers canonical Wnt signaling and endothelial-to-mesenchymal transition. Dis Model Mech 4:469–483PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Akino T, Hida K, Hida Y et al (2009) Cytogenetic abnormalities of tumour-associated endothelial cells in human malignant tumours. Am J Pathol 175:2657–2667PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L et al (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumour cells: a new model for metastasis. Nat Med 6:100–102PubMedCrossRefGoogle Scholar
  7. 7.
    Anderberg C, Cunha SI, Zhai Z et al (2013) Deficiency for endoglin in tumour vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med 210:563–579PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Aprile G, Rijavec E, Fontanella C et al (2014) Ramucirumab: preclinical research and clinical development. Onco Targets Ther 7:1997–2006PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Arciniegas E, Frid MG, Douglas IS, Stenmark KR (2007) Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293:L1–L8PubMedCrossRefGoogle Scholar
  10. 10.
    Armstrong EJ, Bischoff J (2004) Heart valve development: endothelial cell signaling and differentiation. Circ Res 95:459–470PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ausprunk DH, Folkman J (1977) Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumour angiogenesis. Microvasc Res 14:53–65PubMedCrossRefGoogle Scholar
  12. 12.
    Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901PubMedCrossRefGoogle Scholar
  13. 13.
    Bos D, Zhang XH, Nadal C et al (2009) Massague Genes that mediate breast cancer metastasis to the brain. Nature 459:1005–1009PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Brennen WN, Rosen DM, Wang H, Isaacs JT, Denmeade SR (2012) Targeting carcinoma-associated fibroblasts within the tumour stroma with a fibroblast activation protein-activated prodrug. J Natl Cancer Inst 104:1320–1334PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Buckanovich RJ, Sasaroli D, O’Brien-Jenkins A et al (2007) Tumour vascular proteins as biomarkers in ovarian cancer. J Clin Oncol 25:852–861PubMedCrossRefGoogle Scholar
  16. 16.
    Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 31:474–488CrossRefGoogle Scholar
  17. 17.
    Bussolati B, Deambrosis I, Russo S et al (2003) Altered angiogenesis and survival in human tumour-derived endothelial cells. FASEB J 17:1159–1161PubMedCrossRefGoogle Scholar
  18. 18.
    Bussolati B, Assenzio B, Deregibus MC, Camussi G (2006) The proangiogenic phenotype of human tumour-derived endothelial cells depends on thrombospondin-1 downregulation via phosphatidylinositol 3-kinase/Akt pathway. J Mol Med 84:852–863PubMedCrossRefGoogle Scholar
  19. 19.
    Calon E, Espinet S, Palomo-Ponce DV et al (2012) Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cerasuolo M, Paris D, Iannotti FA et al (2015) Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res 75:2975–2986PubMedCrossRefGoogle Scholar
  21. 21.
    Chang ACY, Fu Y, Garside VC et al (2011) Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev Cell 21:288–300PubMedCrossRefGoogle Scholar
  22. 22.
    Chen HF, Huang CH, Liu CJ et al (2014) Twist1 induces endothelial differentiation of tumour cells through the Jagged1-KLF4 axis. Nat Commun 22:4697CrossRefGoogle Scholar
  23. 23.
    Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ciombor KK, Berlin J (2014) Aflibercept – a decoy VEGF receptor. Curr Oncol Rep 16:368PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cipriani P, Di Benedetto P, Ruscitti P et al (2015) The endothelial mesenchymal transition in systemic sclerosis is induced by endothelin-1 and transforming growth factor-β and may be blocked by Macitentan, a dual endothelin-1 receptor antagonist. J Rheumatol 42:1808–1816PubMedCrossRefGoogle Scholar
  26. 26.
    Ciszewski WM, Sobierajska K, Wawro ME et al (2017) The ILK-MMP9-MRTF axis is crucial for EndMT differentiation of endothelial cells in a tumour microenvironment. Biochim Biophys Acta 1864:2283–2296CrossRefGoogle Scholar
  27. 27.
    Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521PubMedCrossRefGoogle Scholar
  28. 28.
    Cooley BC, Nevado J, Mellad J et al (2014) TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci Transl Med 6:227ra34PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Crinò L, Metro G (2014) Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. Eur Respir Rev 23:79–91PubMedCrossRefGoogle Scholar
  30. 30.
    Cugno M (2012) Inflammation, coagulation, vascular permeability and thrombosis. Curr Vasc Pharmacol 10:631PubMedCrossRefGoogle Scholar
  31. 31.
    Dejana E, Orsenigo F (2013) Endothelial adherens junctions at a glance. J Cell Sci 126:2545–2549PubMedCrossRefGoogle Scholar
  32. 32.
    Del Galdo F, Lisanti MP, Jimenez SA (2008) Caveolin-1, transforming growth factor-β receptor internalization, and the pathogenesis of systemic sclerosis. Curr Opin Rheumatol 20:713–719PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Deregibus MC, Cantaluppi V, Calogero R et al (2007) Endothelial progenitor cell-derived microvesicles activate an angiogenic program in endothelial cells by an horizontal transfer of mRNA. Blood 110:2440–2448PubMedCrossRefGoogle Scholar
  34. 34.
    DeRuiter MC, Poelmann RE, VanMunsteren JC et al (1997) Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 80:444–451PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Detmar M, Brown LF, Schon MP et al (1998) Increased microvascular density and enhanced leukocyte rolling and adhesion in the skin of VEGF transgenic mice. J Invest Dermatol 111:1PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Döme B, Hendrix MJ, Paku S et al (2007) Alternative vascularization mechanisms in cancer. Pathology and therapeutic implications. Am J Pathol 170:1–15PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dudley AC (2012) Tumour endothelial cells. Cold Spring Harb Perspect Med 2:a006536PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Dvorak HF, Brown LF, Detmar M, Dvorak AM (1995) Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039PubMedPubMedCentralGoogle Scholar
  39. 39.
    Ebos JM, Kerbel RS (2011) Antiangiogenic therapy: impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol 8:210–221PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Evrard SM, Lecce L, Michelis KC et al (2016) Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat Commun 7:11853PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Folkman J (1971) Tumour angiogenesis: therapeutics implication. N Engl J Med 285:1182–1186PubMedCrossRefGoogle Scholar
  42. 42.
    Fu Y, Chang A, Chang L et al (2009) Differential regulation of transforming growth factor β signaling pathways by Notch in human endothelial cells. J Biol Chem 284:19452–19462PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Furuya M, Nishiyama M, Kasuya Y et al (2005) Pathophysiology of tumour neovascularization. Vasc Health Risk Manag 1:277–290PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ganguly H, Yang RS et al (2012) The role of microtubules and their dynamic in cell migration. J Biol Chem 287:43359–43369PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Gao D, Nolan D, McDonnell K et al (2009) Bone marrow-derived endothelial progenitor cells contribute to the angiogenic switch in tumour growth and metastatic progression. Biochim Biophys Acta 1796:33–40PubMedPubMedCentralGoogle Scholar
  46. 46.
    Gasperini P, Espigol-Frigole G, McCormick PJ et al (2012) Kaposi sarcoma herpes virus promotes endothelial-to-mesenchymal transition through notch-dependent signaling. Cancer Res 72(5):1157–1169PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Ghajar CM, George SC, Putnam AJ (2008) Matrix metalloproteinase control of capillary morphogenesis. Crit Rev Eukaryot Gene Expr 18:251–278PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Gupta GP, Massague J (2006) Cancer metastasis: building a framework. Cell 127:679–695PubMedCrossRefGoogle Scholar
  49. 49.
    Hanahan D, Weinberg R (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Hida K, Hida Y, Shindoh M (2008) Understanding tumour endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 99:459–466PubMedCrossRefGoogle Scholar
  51. 51.
    Hida K, Maishi N, Annan DA, Hida Y (2018) Contribution of tumour endothelial cells in cancer progression. Int J Mol Sci 19. pii: E1272.Google Scholar
  52. 52.
    Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26:489–502PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Huang TH, Chu TY (2014) Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer. Oncogene 33:3636–3647PubMedCrossRefGoogle Scholar
  54. 54.
    Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342PubMedCrossRefGoogle Scholar
  55. 55.
    Junqueira LC, Carneiro J (2005) Basic histology: text and Atlas, 10th edn. McGraw-Hill Medical, New York-Burr Ridge-San Francisco, p 215CrossRefGoogle Scholar
  56. 56.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401CrossRefGoogle Scholar
  57. 57.
    Khella HWZ, Butz H, Ding Q et al (2015) miR-221/222 are involved in response to Sunitinib treatment in metastatic renal cell carcinoma. Mol Ther 23:1748–1758PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Khuon S, Liang L, Dettman L et al (2010) Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci 123:431–440PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kienast Y, von Baumgarten L, Fuhrmann M et al (2010) Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 16:116–122PubMedCrossRefGoogle Scholar
  60. 60.
    Lee T-H, Avraham HK, Jiang S, Avraham S (2003) Vascular endothelial growth factor modulates the transendothelial migration of MDA-MB-231 breast cancer cells through regulation of brain microvascular endothelial cell permeability. J Biol Chem 278:5277–5384PubMedCrossRefGoogle Scholar
  61. 61.
    Leong HS, Robertson AE, Stoletov K et al (2014) Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep 8:1558–1570PubMedCrossRefGoogle Scholar
  62. 62.
    Li Z, Wermuth PJ, Benn BS et al (2013) Caveolin-1 deficiency induces spontaneous endothelial-to-mesenchymal transition in murine pulmonary endothelial cells in vitro. Am J Pathol 182:325–331PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Li L, Chen L, Zang J et al (2015) C3a and C5a receptor antagonists ameliorate endothelial-myofibroblast transition via the Wnt/β-catenin signaling pathway in diabetic kidney disease. Metabolism 64:597–610PubMedCrossRefGoogle Scholar
  64. 64.
    Locy H, de Mey S, de Mey W et al (2018) Immunomodulation of the tumour microenvironment: turn foe into friend. Front Immunol 9:2909PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Loizzi V, Del Vecchio V, Gargano G et al (2017) Biological pathways involved in tumour angiogenesis and bevacizumab based anti-angiogenic therapy with special references to ovarian cancer. Int J Mol Sci 18:1967PubMedCentralCrossRefPubMedGoogle Scholar
  66. 66.
    Lu C, Bonome T, Li Y et al (2007) Gene alterations identified by expression profiling in tumour-associated endothelial cells from invasive ovarian carcinoma. Cancer Res 67:1757–1768PubMedCrossRefGoogle Scholar
  67. 67.
    Maishi N, Ohba Y, Akiyama K et al (2016) Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan. Sci Rep 6:28039PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Mary S, Charrasse S, Meriane M et al (2002) Biogenesis of N-cadherin-dependent cell-cell contacts in living fibroblasts is a microtubule-dependent kinesin-driven mechanism. Mol Biol Cell 13:285–301PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Masoud GN, Li W (2015) HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B 5:378–389PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Medici D, Kalluri R (2012) Endothelial mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 144:724–732Google Scholar
  71. 71.
    Medici D, Potenta S, Kalluri R (2011) Transforming growth factor-β2 promotes Snail-mediated endothelial–mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 437:515–520PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Medinger M, Mross K (2010) Clinical trials with anti-angiogenic agents in hematological malignancies. J Angiogenes Res 2:10PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443PubMedCrossRefGoogle Scholar
  74. 74.
    Muraki C, Ohga N, Hida Y et al (2011) Cyclooxygenase-2 inhibition causes antiangiogenic effects on tumour endothelial and vascular progenitor cells. Int J Cancer 130:59–70PubMedCrossRefGoogle Scholar
  75. 75.
    Nagy JA, Chang SH, Shih SC et al (2010) Heterogeneity of the tumour vasculature. Semin Thromb Hemost 36:321–331PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Nakajima Y, Yamagishi T, Hokari S, Nakamura H (2000) Mechanisms involved in valvuloseptal endocardial cushion formation in early cardiogenesis: roles of transforming growth factor-beta and bone morphogenetic protein. Anat Rec 258:119–127PubMedCrossRefGoogle Scholar
  77. 77.
    Nanda A, St Croix B (2004) Tumour endothelial markers: new targets for cancer therapy. Curr Opin Oncol 16:44–49PubMedCrossRefGoogle Scholar
  78. 78.
    Nasir A (2019) Angiogenic signaling pathways and anti-angiogenic therapies in human cancer: applications in precision medicine. Predictive Biomarkers Oncol:243–262Google Scholar
  79. 79.
    Noseda M, McLean G, Niessen K et al (2004) Notch activation results in phenotypic and functional changes consistent with endothelial-to-mesenchymal transformation. Circ Res 94:910–917PubMedCrossRefGoogle Scholar
  80. 80.
    Ohmura-Kakutani H, Akiyama K, Maishi N et al (2014) Identification of tumour endothelial cells with high aldehyde dehydrogenase activity and a highly angiogenic phenotype. PLoS One 9:e113910PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Padua D, Zhang XZ, Wang Q et al (2008) TGFbeta primes breast tumours for lung metastasis seeding through angiopoietin-like 4. Cell 133:66–77PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Paku S, Paweletz N (1991) First steps of tumour-related angiogenesis. Lab Investig 65:334–346PubMedGoogle Scholar
  84. 84.
    Pantsulaia I, Ciszewski WM, Niewiarowska J (2016) Senescent endothelial cells: potential modulators of immunosenescence and ageing. Ageing Res Rev 29:13–25PubMedCrossRefGoogle Scholar
  85. 85.
    Potts JD, Runyan RB (1989) Epithelial-mesenchymal cell transformation in the embryonic heart can be mediated, in part, by transforming growth factor-beta. Dev Biol 134:392–401PubMedCrossRefGoogle Scholar
  86. 86.
    Prager GW, Lackner E-M, Krauth M-T et al (2010) Targeting of VEGF-dependent transendothelial migration of cancer cells by bevacizumab. Mol Oncol 4:150–160PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Raffaghello L, Vacca A, Pistoia V, Ribatti D (2015) Cancer associated fibroblasts in hematological malignancies. Oncotarget 6:2589–2603PubMedCrossRefGoogle Scholar
  88. 88.
    Rigamonti N, De Palma M (2013) A role for angiopoietin-2 in organ-specific metastasis. Cell Rep 4:621–623PubMedCrossRefGoogle Scholar
  89. 89.
    Rong X, Huang B, Qiu S et al (2016) Tumour-associated macrophages induce vasculogenic mimicry of glioblastoma multiforme through cyclooxygenase-2 activation. Oncotarget 7:83976–83986PubMedPubMedCentralGoogle Scholar
  90. 90.
    Sanchez-Duffhues G, Orlova V, ten Dijke P (2016) In brief: endothelial-to-mesenchymal transition. J Pathol 238(3):378380CrossRefGoogle Scholar
  91. 91.
    Sasahira T, Kurihara M, Bhawal UK et al (2012) Downregulation of miR-126 induces angiogenesis and lymphangiogenesis by activation of VEGF-A in oral cancer. Br J Cancer 107:700–706PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schully S, Francescone R, Faibish M et al (2012) Transdifferentiation of glioblastoma stem-like cells into mural cells drives vasculogenic mimicry in glioblastomas. J Neurosci 32:12950–12960CrossRefGoogle Scholar
  93. 93.
    Schumacher D, Strilic B, Sivaraj KK et al (2013) Platelet-derived nucleotides promote tumour-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 24:130–137PubMedCrossRefGoogle Scholar
  94. 94.
    Shibuya M (2011) Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: a crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2(12):1097–1105PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    St Croix B, Rago C, Velculescu V et al (2000) Genes expressed in human tumour endothelium. Science 289:1197–1202PubMedCrossRefGoogle Scholar
  96. 96.
    Stockmann C, Schadendorf D, Klose R, Helfrich I (2014) The impact of the immune system on tumour: angiogenesis and vascular remodeling. Front Oncol 4:69PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumour cells. J Cell Sci 123:2332–2341PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Streubel B, Chott A, Huber D et al (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 351:250–259PubMedCrossRefGoogle Scholar
  99. 99.
    Tremblay PL, Huot J, Auger FA (2008) Mechanisms by which E-selectin regulates diapedesis of colon cancer cells under flow conditions. Cancer Res 68:5167–5176PubMedCrossRefGoogle Scholar
  100. 100.
    Tsai JH, Yang J (2013) Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 27:2192–2206PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tsuchiya K, Hida K, Hida Y et al (2010) Adrenomedullin antagonist suppresses tumour formation in renal cell carcinoma through inhibitory effects on tumour endothelial cells and endothelial progenitor mobilization. Int J Oncol 36:1379–1386PubMedGoogle Scholar
  102. 102.
    van Meeteren LA, ten Dijke P (2011) Regulation of endothelial cell plasticity by TGF-β. Cell Tissue Res 347:177–186PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    van Zijl F, Krupitza G, Mikulits W (2011) Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 728:23–34PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212PubMedGoogle Scholar
  105. 105.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15:261–271PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang R, Chadalavada K, Wilshire J et al (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833PubMedCrossRefGoogle Scholar
  107. 107.
    Wang S-H, Chang JS, Hsiao J-R et al (2016) Tumour cell-derived WNT5B modulates in vitro lymphangiogenesis via induction of partial endothelial mesenchymal transition of lymphatic endothelial cells. Oncogene 36:1–13Google Scholar
  108. 108.
    Wang M, Zhao J, Zhang L et al (2017) Role of tumour microenvironment in tumourigenesis. J Cancer 8:761–773PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Warren B (1979) The vascular morphology of tumours. In: Peterson H-I (ed) Tumour blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumours. CRC Press, Boca Raton, pp 1–47Google Scholar
  110. 110.
    Wawro ME, Sobierajska K, Ciszewski WM et al (2017) Tubulin beta 3 and 4 are involved in the generation of early fibrotic stages. Cell Signals 38:26–38CrossRefGoogle Scholar
  111. 111.
    Wawro ME, Chojnacka K, Wieczorek-Szukała K et al (2019) Invasive colon cancer cells induce transdifferentiation of endothelium to cancer-associated fibroblasts through microtubules enriched in tubulin-β3. Int J Mol Sci 20:53CrossRefGoogle Scholar
  112. 112.
    Weis SM, Cheresh DA (2011) Tumour angiogenesis: molecular pathways and therapeutic targets. Nat Med 17:1359–1370PubMedCrossRefGoogle Scholar
  113. 113.
    Wermuth PJ, Li Z, Mendoza FA, Jimenez SA (2016) Stimulation of transforming growth factor-β1-induced endothelial-to-mesenchymal transition and tissue fibrosis by endothelin-1 (ET-1): a novel profibrotic effect of ET-1. PLoS One 11:e0161988PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Widyantoro B, Emoto N, Nakayama K et al (2010) Endothelial cell-derived endothelin-1 promotes cardiac fibrosis in diabetic hearts through stimulation of endothelial-to-mesenchymal transition. Circulation 121:2407–2418PubMedCrossRefGoogle Scholar
  115. 115.
    Xavier S, Vasko R, Matsumoto K et al (2015) Curtailing endothelial TGF-β signaling is sufficient to reduce endothelial mesenchymal transition and fibrosis in CKD. J Am Soc Nephrol 26:817–829PubMedCrossRefGoogle Scholar
  116. 116.
    Xian X, Håkansson J, Ståhlberg A et al (2006) Pericytes limit tumour cell metastasis. J Clin Invest 116:642–651PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumour microenvironment. Front Biosci 15:166–179PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Yagi H, Tan W, Dillenburg-Pilla P, Armando S et al (2011) A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal 4:ra60PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zeisberg M, Kalluri R (2013) Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am J Physiol Cell Physiol 304(3):C216–C225PubMedCrossRefGoogle Scholar
  120. 120.
    Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128PubMedCrossRefGoogle Scholar
  121. 121.
    Zervantonakis IK, Hughes-Alford SK, Charest JL et al (2012) Three-dimensional microfluidic model for tumour cell intravasation and endothelial barrier function. Proc Natl Acad Sci U S A 109:13515–13520PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Zhang B, Halder SK, Zhang S, Datta PK (2009) Targeting transforming growth factor-beta signaling in liver metastasis of colon cancer. Cancer Lett 277:114–120PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Ziyad S, Iruela-Arispe L (2011) Molecular mechanisms of tumour angiogenesis. Genes Cancer 2:1085–1096PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wawro ME, Sobierajska K, Ciszewski WM, Niewiarowska J (2019) Nonsteroidal Anti-Inflammatory Drugs Prevent Vincristine-Dependent Cancer-Associated Fibroblasts Formation. International Journal of Molecular Sciences 20(8):1941PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Katarzyna Sobierajska
    • 1
    Email author
  • Wojciech Michal Ciszewski
    • 1
  • Izabela Sacewicz-Hofman
    • 1
  • Jolanta Niewiarowska
    • 1
  1. 1.Department of Molecular Cell MechanismsMedical University of LodzLodzPoland

Personalised recommendations