Advertisement

Fibroblasts in the Tumor Microenvironment

  • Marta Truffi
  • Luca Sorrentino
  • Fabio CorsiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1234)

Abstract

The implications of a tumor microenvironment in cancer initiation and progression have drawn interest in recent years. Within the tumor stroma, fibroblasts represent a predominant cell type and are responsible for the majority of extracellular components within the tumor microenvironment, such as matrix and soluble factors. A switch from quiescent fibroblasts to cancer-associated fibroblasts triggers a large variety of pro-tumorigenic signals that support tumor progression and shape the surrounding pathological stroma, with the remodeling of tissue architecture and repression of the local immune response. The heterogeneous nature of cancer-associated fibroblasts and their multiple functions are subject of active research as they could represent promising targets for cutting-edge therapeutic approaches to cancer and the tumor microenvironment.

Keywords

Cancer-associated fibroblasts Epithelial-to-mesenchymal transition Tumor microenvironment Pro-tumorigenic cytokines Extracellular matrix remodeling Tumor neoangiogenesis Immunosuppression Cancer-stroma crosstalk Chemoresistance Targeted therapy Cancer treatment 

Notes

Acknowledgment

The authors thank Associazione Italiana per la Ricerca sul Cancro for research support (AIRC IG 20172 to F.C.)

References

  1. 1.
    Adams S, Miller GT, Jesson MI, Watanabe T, Jones B, Wallner BP (2004) PT-100, a small molecule dipeptidyl peptidase inhibitor, has potent antitumor effects and augments antibody-mediated cytotoxicity via a novel immune mechanism. Cancer Res 64:5471–5480PubMedCrossRefGoogle Scholar
  2. 2.
    Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K (2018) Fibroblasts in the tumor microenvironment: shield or spear? Int J Mol Sci 19PubMedCentralCrossRefPubMedGoogle Scholar
  3. 3.
    Aoyagi Y, Oda T, Kinoshita T, Nakahashi C, Hasebe T, Ohkohchi N, Ochiai A (2004) Overexpression of TGF-beta by infiltrated granulocytes correlates with the expression of collagen mRNA in pancreatic cancer. Br J Cancer 91:1316–1326PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596PubMedCrossRefGoogle Scholar
  5. 5.
    Barnas JL, Simpson-Abelson MR, Yokota SJ, Kelleher RJ, Bankert RB (2010) T cells and stromal fibroblasts in human tumor microenvironments represent potential therapeutic targets. Cancer Microenviron 3:29–47PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bartoschek M, Oskolkov N, Bocci M, Lövrot J, Larsson C, Sommarin M, Madsen CD, Lindgren D, Pekar G, Karlsson G et al (2018) Spatially and functionally distinct subclasses of breast cancer-associated fibroblasts revealed by single cell RNA sequencing. Nat Commun 9:5150PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Bochet L, Lehuédé C, Dauvillier S, Wang YY, Dirat B, Laurent V, Dray C, Guiet R, Maridonneau-Parini I, Le Gonidec S et al (2013) Adipocyte-derived fibroblasts promote tumor progression and contribute to the desmoplastic reaction in breast cancer. Cancer Res 73:5657–5668PubMedCrossRefGoogle Scholar
  8. 8.
    Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A (2005) PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell 120:303–313PubMedCrossRefGoogle Scholar
  9. 9.
    Brennen WN, Isaacs JT, Denmeade SR (2012) Rationale behind targeting fibroblast activation protein-expressing carcinoma-associated fibroblasts as a novel chemotherapeutic strategy. Mol Cancer Ther 11:257–266PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bronzert DA, Pantazis P, Antoniades HN, Kasid A, Davidson N, Dickson RB, Lippman ME (1987) Synthesis and secretion of platelet-derived growth factor by human breast cancer cell lines. Proc Natl Acad Sci U S A 84:5763–5767PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bruzzese F, Hägglöf C, Leone A, Sjöberg E, Roca MS, Kiflemariam S, Sjöblom T, Hammarsten P, Egevad L, Bergh A et al (2014) Local and systemic protumorigenic effects of cancer-associated fibroblast-derived GDF15. Cancer Res 74:3408–3417PubMedCrossRefGoogle Scholar
  12. 12.
    Calon A, Espinet E, Palomo-Ponce S, Tauriello DVF, Iglesias M, Céspedes MV, Sevillano M, Nadal C, Jung P, Zhang XH-F et al (2012) Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22:571–584PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, Sevillano M, Palomo-Ponce S, Tauriello DVF, Byrom D et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47:320–329PubMedCrossRefGoogle Scholar
  14. 14.
    Calvo F, Ege N, Grande-Garcia A, Hooper S, Jenkins RP, Chaudhry SI, Harrington K, Williamson P, Moeendarbary E, Charras G et al (2013) Mechanotransduction and YAP-dependent matrix remodelling is required for the generation and maintenance of cancer-associated fibroblasts. Nat Cell Biol 15:637–646PubMedCrossRefGoogle Scholar
  15. 15.
    Chauhan VP, Martin JD, Liu H, Lacorre DA, Jain SR, Kozin SV, Stylianopoulos T, Mousa AS, Han X, Adstamongkonkul P et al (2013) Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat Commun 4:2516PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Chen X, Song E (2019) Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov 18(2):99–115PubMedCrossRefGoogle Scholar
  17. 17.
    Chen B, Wang Z, Sun J, Song Q, He B, Zhang H, Wang X, Dai W, Zhang Q (2016) A tenascin C targeted nanoliposome with navitoclax for specifically eradicating of cancer-associated fibroblasts. Nanomedicine 12:131–141PubMedCrossRefGoogle Scholar
  18. 18.
    Chen Q, Liu G, Liu S, Su H, Wang Y, Li J, Luo C (2018) Remodeling the tumor microenvironment with emerging Nanotherapeutics. Trends Pharmacol Sci 39:59–74PubMedCrossRefGoogle Scholar
  19. 19.
    Cheng JD, Weiner LM (2003) Tumors and their microenvironments: tilling the soil. Commentary re: A. M. Scott et al., A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res., 9: 1639–1647, 2003. Clin Cancer Res 9:1590–1595PubMedGoogle Scholar
  20. 20.
    Cheng JD, Dunbrack RL, Valianou M, Rogatko A, Alpaugh RK, Weiner LM (2002) Promotion of tumor growth by murine fibroblast activation protein, a serine protease, in an animal model. Cancer Res 62:4767–4772PubMedGoogle Scholar
  21. 21.
    Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, Sirven P, Magagna I, Fuhrmann L, Bernard C et al (2018) Fibroblast heterogeneity and immunosuppressive environment in human breast cancer. Cancer Cell 33:463–479.e10PubMedCrossRefGoogle Scholar
  22. 22.
    Cruz-Bermúdez A, Laza-Briviesca R, Vicente-Blanco RJ, García-Grande A, Coronado MJ, Laine-Menéndez S, Alfaro C, Sanchez JC, Franco F, Calvo V et al (2019) Cancer-associated fibroblasts modify lung cancer metabolism involving ROS and TGF-β signaling. Free Radic Biol Med 130:163–173PubMedCrossRefGoogle Scholar
  23. 23.
    Darby IA, Laverdet B, Bonté F, Desmoulière A (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301–311PubMedPubMedCentralGoogle Scholar
  24. 24.
    De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP, Clarke RB (2017) GPER mediates the angiocrine actions induced by IGF1 through the HIF-1α/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res 19:129PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ding X, Ji J, Jiang J, Cai Q, Wang C, Shi M, Yu Y, Zhu Z, Zhang J (2018) HGF-mediated crosstalk between cancer-associated fibroblasts and MET-unamplified gastric cancer cells activates coordinated tumorigenesis and metastasis. Cell Death Dis 9:867PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Driskell RR, Watt FM (2015) Understanding fibroblast heterogeneity in the skin. Trends Cell Biol 25:92–99PubMedCrossRefGoogle Scholar
  27. 27.
    Dumont N, Liu B, Defilippis RA, Chang H, Rabban JT, Karnezis AN, Tjoe JA, Marx J, Parvin B, Tlsty TD (2013) Breast fibroblasts modulate early dissemination, tumorigenesis, and metastasis through alteration of extracellular matrix characteristics. Neoplasia 15:249–262PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Duperret EK, Trautz A, Ammons D, Perales-Puchalt A, Wise MC, Yan J, Reed C, Weiner DB (2018) Alteration of the tumor stroma using a consensus DNA vaccine targeting fibroblast activation protein (FAP) synergizes with antitumor vaccine therapy in mice. Clin Cancer Res 24:1190–1201PubMedCrossRefGoogle Scholar
  29. 29.
    Durning P, Schor SL, Sellwood RA (1984) Fibroblasts from patients with breast cancer show abnormal migratory behaviour in vitro. Lancet 2:890–892PubMedCrossRefGoogle Scholar
  30. 30.
    Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659PubMedCrossRefGoogle Scholar
  31. 31.
    Eager RM, Cunningham CC, Senzer N, Richards DA, Raju RN, Jones B, Uprichard M, Nemunaitis J (2009a) Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer. Clin Oncol (R Coll Radiol) 21:464–472CrossRefGoogle Scholar
  32. 32.
    Eager RM, Cunningham CC, Senzer NN, Stephenson J, Anthony SP, O’Day SJ, Frenette G, Pavlick AC, Jones B, Uprichard M et al (2009b) Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma. BMC Cancer 9:263PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefGoogle Scholar
  34. 34.
    Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184PubMedCrossRefGoogle Scholar
  35. 35.
    Engle SJ, Hoying JB, Boivin GP, Ormsby I, Gartside PS, Doetschman T (1999) Transforming growth factor beta1 suppresses nonmetastatic colon cancer at an early stage of tumorigenesis. Cancer Res 59:3379–3386PubMedGoogle Scholar
  36. 36.
    Erez N, Truitt M, Olson P, Arron ST, Hanahan D (2010) Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 17:135–147PubMedCrossRefGoogle Scholar
  37. 37.
    Fang D, Sun L, Lin S, Zhou L, Su N, Yuan S, Yu B (2012) Vinorelbine inhibits angiogenesis and 95D migration via reducing hypoxic fibroblast stromal cell-derived factor 1 secretion. Exp Biol Med (Maywood) 237:1045–1055CrossRefGoogle Scholar
  38. 38.
    Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527PubMedCrossRefGoogle Scholar
  39. 39.
    Formenti SC, Lee P, Adams S, Goldberg JD, Li X, Xie MW, Ratikan JA, Felix C, Hwang L, Faull KF et al (2018) Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin Cancer Res 24:2493–2504PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Freedman JD, Duffy MR, Lei-Rossmann J, Muntzer A, Scott EM, Hagel J, Campo L, Bryant RJ, Verrill C, Lambert A et al (2018) An oncolytic virus expressing a T-cell engager simultaneously targets cancer and immunosuppressive stromal cells. Cancer Res 78:6852–6865PubMedCrossRefGoogle Scholar
  41. 41.
    Goetz JG, Minguet S, Navarro-Lérida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibáñez T, Pellinen T, Echarri A et al (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146:148–163PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Guido C, Whitaker-Menezes D, Capparelli C, Balliet R, Lin Z, Pestell RG, Howell A, Aquila S, Andò S, Martinez-Outschoorn U et al (2012) Metabolic reprogramming of cancer-associated fibroblasts by TGF-β drives tumor growth: connecting TGF-β signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle 11:3019–3035PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Harper J, Sainson RCA (2014) Regulation of the anti-tumour immune response by cancer-associated fibroblasts. Semin Cancer Biol 25:69–77PubMedCrossRefGoogle Scholar
  44. 44.
    Hofheinz R-D, al-Batran S-E, Hartmann F, Hartung G, Jäger D, Renner C, Tanswell P, Kunz U, Amelsberg A, Kuthan H et al (2003) Stromal antigen targeting by a humanised monoclonal antibody: an early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie 26:44–48PubMedGoogle Scholar
  45. 45.
    Hossen MN, Rao G, Dey A, Robertson JD, Bhattacharya R, Mukherjee P (2019) Gold nanoparticle transforms activated cancer-associated fibroblasts to quiescence. ACS Appl Mater Interfaces 11:26060–26068PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, Richardson A, Violette S, Nikolskaya T, Nikolsky Y et al (2008) Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 13:394–406PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Huang Y, Simms AE, Mazur A, Wang S, León NR, Jones B, Aziz N, Kelly T (2011) Fibroblast activation protein-α promotes tumor growth and invasion of breast cancer cells through non-enzymatic functions. Clin Exp Metastasis 28:567–579PubMedCrossRefGoogle Scholar
  48. 48.
    Hui L, Chen Y (2015) Tumor microenvironment: sanctuary of the devil. Cancer Lett 368:7–13PubMedCrossRefGoogle Scholar
  49. 49.
    Ishii G, Ochiai A, Neri S (2016) Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Adv Drug Deliv Rev 99:186–196PubMedCrossRefGoogle Scholar
  50. 50.
    Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433PubMedCrossRefGoogle Scholar
  51. 51.
    Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598PubMedCrossRefGoogle Scholar
  52. 52.
    Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401PubMedCrossRefGoogle Scholar
  53. 53.
    Kelly T (2005) Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resist Updat 8:51–58PubMedCrossRefGoogle Scholar
  54. 54.
    Kim DJ, Dunleavey JM, Xiao L, Ollila DW, Troester MA, Otey CA, Li W, Barker TH, Dudley AC (2018) Suppression of TGFβ-mediated conversion of endothelial cells and fibroblasts into cancer associated (myo)fibroblasts via HDAC inhibition. Br J Cancer 118:1359–1368PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Kim JH, Oh S-H, Kim E-J, Park SJ, Hong SP, Cheon JH, Kim TI, Kim WH (2012) The role of myofibroblasts in upregulation of S100A8 and S100A9 and the differentiation of myeloid cells in the colorectal cancer microenvironment. Biochem Biophys Res Commun 423:60–66PubMedCrossRefGoogle Scholar
  56. 56.
    Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, Deraz EM, Siriwardena SBSM, Tahara H, Ishimaru N et al (2012) Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem 287:38716–38728PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Lakins MA, Ghorani E, Munir H, Martins CP, Shields JD (2018) Cancer-associated fibroblasts induce antigen-specific deletion of CD8 + T cells to protect tumour cells. Nat Commun 9:948PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lamouille S, Xu J, Derynck R (2014) Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    LeBien TW, McCormack RT (1989) The common acute lymphoblastic leukemia antigen (CD10) – emancipation from a functional enigma. Blood 73:625–635PubMedCrossRefGoogle Scholar
  60. 60.
    LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Li X-Y, Hu S-Q, Xiao L (2015) The cancer-associated fibroblasts and drug resistance. Eur Rev Med Pharmacol Sci 19:2112–2119PubMedGoogle Scholar
  62. 62.
    Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4:e7965PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lippman ME, Dickson RB, Gelmann EP, Rosen N, Knabbe C, Bates S, Bronzert D, Huff K, Kasid A (1988) Growth regulatory peptide production by human breast carcinoma cells. J Steroid Biochem 30:53–61PubMedCrossRefGoogle Scholar
  64. 64.
    Lochter A, Galosy S, Muschler J, Freedman N, Werb Z, Bissell MJ (1997) Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 139:1861–1872PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Löhr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H, Jesnowski R (2001) Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61:550–555PubMedGoogle Scholar
  66. 66.
    Lynch MD, Watt FM (2018) Fibroblast heterogeneity: implications for human disease. J Clin Invest 128:26–35PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Marsh T, Pietras K, McAllister SS (2013) Fibroblasts as architects of cancer pathogenesis. Biochim Biophys Acta 1832:1070–1078PubMedCrossRefGoogle Scholar
  68. 68.
    Massagué J (2012) TGFβ signalling in context. Nat Rev Mol Cell Biol 13:616–630PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Matsuo Y, Ochi N, Sawai H, Yasuda A, Takahashi H, Funahashi H, Takeyama H, Tong Z, Guha S (2009) CXCL8/IL-8 and CXCL12/SDF-1alpha co-operatively promote invasiveness and angiogenesis in pancreatic cancer. Int J Cancer 124:853–861PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Melamed JR, Riley RS, Valcourt DM, Day ES (2016) Using gold nanoparticles to disrupt the tumor microenvironment: an emerging therapeutic strategy. ACS Nano 10:10631–10635PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Meulmeester E, Ten Dijke P (2011) The dynamic roles of TGF-β in cancer. J Pathol 223:205–218PubMedCrossRefGoogle Scholar
  72. 72.
    Mishra P, Banerjee D, Ben-Baruch A (2011) Chemokines at the crossroads of tumor-fibroblast interactions that promote malignancy. J Leukoc Biol 89:31–39PubMedCrossRefGoogle Scholar
  73. 73.
    Morris JC, Tan AR, Olencki TE, Shapiro GI, Dezube BJ, Reiss M, Hsu FJ, Berzofsky JA, Lawrence DP (2014) Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One 9:e90353PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Mross K, Stefanic M, Gmehling D, Frost A, Baas F, Unger C, Strecker R, Henning J, Gaschler-Markefski B, Stopfer P et al (2010) Phase I study of the angiogenesis inhibitor BIBF 1120 in patients with advanced solid tumors. Clin Cancer Res 16:311–319PubMedCrossRefGoogle Scholar
  75. 75.
    Mueller MM, Fusenig NE (2004) Friends or foes – bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849PubMedCrossRefGoogle Scholar
  76. 76.
    Narra K, Mullins SR, Lee H-O, Strzemkowski-Brun B, Magalong K, Christiansen VJ, McKee PA, Egleston B, Cohen SJ, Weiner LM et al (2007) Phase II trial of single agent Val-boroPro (Talabostat) inhibiting fibroblast activation protein in patients with metastatic colorectal cancer. Cancer Biol Ther 6:1691–1699PubMedCrossRefGoogle Scholar
  77. 77.
    Nazareth MR, Broderick L, Simpson-Abelson MR, Kelleher RJ, Yokota SJ, Bankert RB (2007) Characterization of human lung tumor-associated fibroblasts and their ability to modulate the activation of tumor-associated T cells. J Immunol 178:5552–5562PubMedCrossRefGoogle Scholar
  78. 78.
    Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18:1135–1149PubMedCrossRefGoogle Scholar
  79. 79.
    Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E (2019) In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer.  https://doi.org/10.1002/ijc.32193PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Ohshio Y, Teramoto K, Hanaoka J, Tezuka N, Itoh Y, Asai T, Daigo Y, Ogasawara K (2015) Cancer-associated fibroblast-targeted strategy enhances antitumor immune responses in dendritic cell-based vaccine. Cancer Sci 106:134–142PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Orimo A, Weinberg RA (2006) Stromal fibroblasts in cancer: a novel tumor-promoting cell type. Cell Cycle 5:1597–1601PubMedCrossRefGoogle Scholar
  82. 82.
    Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth--bystanders turning into key players. Curr Opin Genet Dev 19:67–73PubMedCrossRefGoogle Scholar
  83. 83.
    Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8:98–101PubMedGoogle Scholar
  84. 84.
    Paulsson J, Micke P (2014) Prognostic relevance of cancer-associated fibroblasts in human cancer. Semin Cancer Biol 25:61–68PubMedCrossRefGoogle Scholar
  85. 85.
    Paulsson J, Ehnman M, Östman A (2014) PDGF receptors in tumor biology: prognostic and predictive potential. Future Oncol 10:1695–1708PubMedCrossRefGoogle Scholar
  86. 86.
    Pietras K, Pahler J, Bergers G, Hanahan D (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5:e19PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Pinchuk IV, Saada JI, Beswick EJ, Boya G, Qiu SM, Mifflin RC, Raju GS, Reyes VE, Powell DW (2008) PD-1 ligand expression by human colonic myofibroblasts/fibroblasts regulates CD4+ T-cell activity. Gastroenterology 135:1228–1237, 1237.e1-2PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Popat S, Mellemgaard A, Fahrbach K, Martin A, Rizzo M, Kaiser R, Griebsch I, Reck M (2015) Nintedanib plus docetaxel as second-line therapy in patients with non-small-cell lung cancer: a network meta-analysis. Future Oncol 11:409–420PubMedCrossRefGoogle Scholar
  89. 89.
    Purcell JW, Tanlimco SG, Hickson J, Fox M, Sho M, Durkin L, Uziel T, Powers R, Foster K, McGonigal T et al (2018) LRRC15 is a novel mesenchymal protein and stromal target for antibody-drug conjugates. Cancer Res 78:4059–4072PubMedCrossRefGoogle Scholar
  90. 90.
    Qian L, Tang Z, Yin S, Mo F, Yang X, Hou X, Liu A, Lu X (2018) Fusion of dendritic cells and cancer-associated fibroblasts for activation of anti-tumor cytotoxic T lymphocytes. J Biomed Nanotechnol 14:1826–1835PubMedCrossRefGoogle Scholar
  91. 91.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Quante M, Tu SP, Tomita H, Gonda T, Wang SSW, Takashi S, Baik GH, Shibata W, Diprete B, Betz KS et al (2011) Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell 19:257–272PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Raffaghello L, Dazzi F (2015) Classification and biology of tumour associated stromal cells. Immunol Lett 168:175–182PubMedCrossRefGoogle Scholar
  94. 94.
    Reck M, Kaiser R, Eschbach C, Stefanic M, Love J, Gatzemeier U, Stopfer P, von Pawel J (2011) A phase II double-blind study to investigate efficacy and safety of two doses of the triple angiokinase inhibitor BIBF 1120 in patients with relapsed advanced non-small-cell lung cancer. Ann Oncol 22:1374–1381PubMedCrossRefGoogle Scholar
  95. 95.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Sánchez-Elsner T, Botella LM, Velasco B, Corbí A, Attisano L, Bernabéu C (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276:38527–38535PubMedCrossRefGoogle Scholar
  97. 97.
    Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L et al (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158:564–578PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Schor SL, Schor AM, Grey AM, Rushton G (1988) Foetal and cancer patient fibroblasts produce an autocrine migration-stimulating factor not made by normal adult cells. J Cell Sci 90(Pt 3):391–399PubMedGoogle Scholar
  99. 99.
    Scott AM, Wiseman G, Welt S, Adjei A, Lee F-T, Hopkins W, Divgi CR, Hanson LH, Mitchell P, Gansen DN et al (2003) A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin Cancer Res 9:1639–1647PubMedGoogle Scholar
  100. 100.
    Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA (2004) The fibroblast: sentinel cell and local immune modulator in tumor tissue. Int J Cancer 108:173–180PubMedCrossRefGoogle Scholar
  101. 101.
    Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ (2001) The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development 128:3117–3131PubMedPubMedCentralGoogle Scholar
  102. 102.
    Simpkins SA, Hanby AM, Holliday DL, Speirs V (2012) Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol 227:490–498PubMedCrossRefGoogle Scholar
  103. 103.
    de Sostoa J, Fajardo CA, Moreno R, Ramos MD, Farrera-Sal M, Alemany R (2019) Targeting the tumor stroma with an oncolytic adenovirus secreting a fibroblast activation protein-targeted bispecific T-cell engager. J Immunother Cancer 7:19PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Sternlicht MD, Lochter A, Sympson CJ, Huey B, Rougier JP, Gray JW, Pinkel D, Bissell MJ, Werb Z (1999) The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell 98:137–146PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Stetler-Stevenson WG, Aznavoorian S, Liotta LA (1993a) Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol 9:541–573PubMedCrossRefGoogle Scholar
  106. 106.
    Stetler-Stevenson WG, Liotta LA, Kleiner DE (1993b) Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. FASEB J 7:1434–1441PubMedCrossRefGoogle Scholar
  107. 107.
    Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405PubMedCrossRefGoogle Scholar
  108. 108.
    Su S, Chen J, Yao H, Liu J, Yu S, Lao L, Wang M, Luo M, Xing Y, Chen F et al (2018) CD10+GPR77+ cancer-associated fibroblasts promote cancer formation and chemoresistance by sustaining cancer stemness. Cell 172:841–856.e16PubMedCrossRefGoogle Scholar
  109. 109.
    Sugimoto H, Mundel TM, Kieran MW, Kalluri R (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646PubMedCrossRefGoogle Scholar
  110. 110.
    Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G et al (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14:342–356PubMedCrossRefGoogle Scholar
  111. 111.
    Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3:349–363PubMedCrossRefGoogle Scholar
  112. 112.
    Truffi M, Mazzucchelli S, Bonizzi A, Sorrentino L, Allevi R, Vanna R, Morasso C, Corsi F (2019) Nano-strategies to target breast cancer-associated fibroblasts: rearranging the tumor microenvironment to achieve antitumor efficacy. Int J Mol Sci 20(6)PubMedCentralCrossRefPubMedGoogle Scholar
  113. 113.
    Van Linthout S, Miteva K, Tschöpe C (2014) Crosstalk between fibroblasts and inflammatory cells. Cardiovasc Res 102:258–269PubMedCrossRefGoogle Scholar
  114. 114.
    Vosseler S, Lederle W, Airola K, Obermueller E, Fusenig NE, Mueller MM (2009) Distinct progression-associated expression of tumor and stromal MMPs in HaCaT skin SCCs correlates with onset of invasion. Int J Cancer 125:2296–2306PubMedCrossRefGoogle Scholar
  115. 115.
    Welt S, Divgi CR, Scott AM, Garin-Chesa P, Finn RD, Graham M, Carswell EA, Cohen A, Larson SM, Old LJ (1994) Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J Clin Oncol 12:1193–1203PubMedCrossRefGoogle Scholar
  116. 116.
    Wu X, Tao P, Zhou Q, Li J, Yu Z, Wang X, Li J, Li C, Yan M, Zhu Z et al (2017) IL-6 secreted by cancer-associated fibroblasts promotes epithelial-mesenchymal transition and metastasis of gastric cancer via JAK2/STAT3 signaling pathway. Oncotarget 8:20741–20750PubMedPubMedCentralGoogle Scholar
  117. 117.
    Xia Q, Zhang F-F, Geng F, Liu C-L, Wang Y-Q, Xu P, Lu Z-Z, Xie Y, Wu H, Chen Y et al (2016) Improvement of anti-tumor immunity of fibroblast activation protein α based vaccines by combination with cyclophosphamide in a murine model of breast cancer. Cell Immunol 310:89–98PubMedCrossRefGoogle Scholar
  118. 118.
    Yamashita M, Ogawa T, Zhang X, Hanamura N, Kashikura Y, Takamura M, Yoneda M, Shiraishi T (2012) Role of stromal myofibroblasts in invasive breast cancer: stromal expression of alpha-smooth muscle actin correlates with worse clinical outcome. Breast Cancer 19:170–176PubMedCrossRefGoogle Scholar
  119. 119.
    Yang J, Lu Y, Lin Y-Y, Zheng Z-Y, Fang J-H, He S, Zhuang S-M (2016) Vascular mimicry formation is promoted by paracrine TGF-β and SDF1 of cancer-associated fibroblasts and inhibited by miR-101 in hepatocellular carcinoma. Cancer Lett 383:18–27PubMedCrossRefGoogle Scholar
  120. 120.
    Yu M, Tannock IF (2012) Targeting tumor architecture to favor drug penetration: a new weapon to combat chemoresistance in pancreatic cancer? Cancer Cell 21:327–329PubMedCrossRefGoogle Scholar
  121. 121.
    Zeisberg EM, Zeisberg M (2013) The role of promoter hypermethylation in fibroblast activation and fibrogenesis. J Pathol 229:264–273PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang Y, Xiong X, Huai Y, Dey A, Hossen MN, Roy RV, Elechalawar CK, Rao G, Bhattacharya R, Mukherjee P (2019) Gold nanoparticles disrupt tumor microenvironment - endothelial cell cross talk to inhibit Angiogenic phenotypes in vitro. Bioconjug Chem 30:1724PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Zhao X, Pan J, Li W, Yang W, Qin L, Pan Y (2018) Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels. Int J Nanomedicine 13:6207–6221PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Zhen Z, Tang W, Wang M, Zhou S, Wang H, Wu Z, Hao Z, Li Z, Liu L, Xie J (2017) Protein Nanocage mediated fibroblast-activation protein targeted Photoimmunotherapy to enhance cytotoxic T cell infiltration and tumor control. Nano Lett 17:862–869PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Istituti Clinici Scientifici Maugeri IRCCSPaviaItaly
  2. 2.Department of Biomedical and Clinical Sciences “Luigi Sacco”Università degli studi di MilanoMilanoItaly

Personalised recommendations