Advertisement

Genes and NAFLD/NASH Progression

  • Rasha El Sharkawy
  • Jacob George
  • Mohammed EslamEmail author
Chapter
  • 91 Downloads

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a global health issue that afflicts approximately a quarter of the population and increases the risk of both liver complications, as well as cardiovascular disease and diabetes. The histological spectrum of NAFLD includes steatosis with or without steatohepatitis, and extends right through to fibrosis, cirrhosis and hepatocellular carcinoma. A cardinal feature of the phenotype is marked heterogeneity and inter-individual variation in both disease susceptibility and progression. This is at least partially attributed to genetic and epigenetic variation. Recent years have witnessed an exponential growth in knowledge of the genetic architecture of NAFLD that has been fuelled to a large extent by genome-wide association and large candidate gene studies. In this review, we provide an overview of current knowledge pertaining to the genetic and epigenetic basis of NAFLD, the potential translational implications of this knowledge, current challenges and perspectives on the future of advances in this field for precision medicine.

Notes

Acknowledgements

ME and JG are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (APP1053206, APP1149976) and Project grants (APP1107178 and APP1108422).

Competing interest’s statement: The authors declare no competing interests for this manuscript.

References

  1. 1.
    Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, Harrison SA, et al. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–57.CrossRefGoogle Scholar
  2. 2.
    Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20.CrossRefGoogle Scholar
  3. 3.
    Dela Cruz AC, Bugianesi E, George J, Day CP, Liaquat H, Charatcharoenwitthaya P, Mills PR, et al. Characteristics and long-term prognosis of lean patients with nonalcoholic fatty liver disease. Gastroenterology. 2014;146:S909.CrossRefGoogle Scholar
  4. 4.
    Hagstrom H, Nasr P, Ekstedt M, Hammar U, Stal P, Hultcrantz R, Kechagias S. Risk for development of severe liver disease in lean patients with nonalcoholic fatty liver disease: a long-term follow-up study. Hepatol Commun. 2018;2:48–57.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–21.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Vilar-Gomez E, Calzadilla-Bertot L, Wong VWS, Castellanos M, Aller-de la Fuente R, Metwally M, Eslam M, et al. Fibrosis severity as a determinant of cause-specific mortality in patients with advanced nonalcoholic fatty liver disease: a multi-national cohort study. Gastroenterology. 2018;155:443–57.CrossRefGoogle Scholar
  7. 7.
    Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62:S47–64.CrossRefGoogle Scholar
  8. 8.
    Younossi ZM, Henry L, Bush H, Mishra A. Clinical and economic burden of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Clin Liver Dis. 2018;22:1–10.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bertot LC, Jeffrey GP, Wallace M, MacQuillan G, Garas G, Ching HL, Adams LA. Nonalcoholic fatty liver disease-related cirrhosis is commonly unrecognized and associated with hepatocellular carcinoma. Hepatol Commun. 2017;1:53–60.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Eslam M, Valenti L, Romeo S. Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018;68:268–79.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Eslam M, George J. Genetic and epigenetic mechanisms of NASH. Hepatol Int. 2016;10:394–406.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Loomba R, Schork N, Chen CH, Bettencourt R, Bhatt A, Ang B, Nguyen P, et al. Heritability of hepatic fibrosis and steatosis based on a prospective twin study. Gastroenterology. 2015;149:1784–93.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cui J, Chen CH, Lo MT, Schork N, Bettencourt R, Gonzalez MP, Bhatt A, et al. Shared genetic effects between hepatic steatosis and fibrosis: a prospective twin study. Hepatology. 2016;64:1547–58.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Caussy C, Soni M, Cui J, Bettencourt R, Schork N, Chen CH, Ikhwan MA, et al. Nonalcoholic fatty liver disease with cirrhosis increases familial risk for advanced fibrosis. J Clin Invest. 2017;127:2697–704.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, et al. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology. 2004;40:1387–95.CrossRefGoogle Scholar
  16. 16.
    Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;49:791–801.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, Spencer KL, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308:419–21.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shen JY, Wong GLH, Chan HLY, Chan RSM, Chan HY, Chu WCW, Cheung BHK, et al. PNPLA3 gene polymorphism and response to lifestyle modification in patients with nonalcoholic fatty liver disease. J Gastroenterol Hepatol. 2015;30:139–46.CrossRefGoogle Scholar
  20. 20.
    Trepo E, Romeo S, Zucman-Rossi J, Nahon P. PNPLA3 gene in liver diseases. J Hepatol. 2016;65:399–412.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Sookoian S, Castano GO, Burgueno AL, Gianotti TF, Rosselli MS, Pirola CJ. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res. 2009;50:2111–6.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Valenti L, Al-Serri A, Daly AK, Galmozzi E, Rametta R, Dongiovanni P, Nobili V, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology. 2010;51:1209–17.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Liu YL, Patman GL, Leathart JBS, Piguet AC, Burt AD, Dufour JF, Day CP, et al. Carriage of the PNPLA3 rs738409 C > G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61:75–81.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Barata L, Feitosa MF, Bielak LF, Halligan B, Baldridge AS, Guo XQ, Yerges-Armstrong LM, et al. Insulin resistance exacerbates genetic predisposition to nonalcoholic fatty liver disease in individuals without diabetes. Hepatol Commun. 2019;3:894–907.PubMedPubMedCentralGoogle Scholar
  25. 25.
    He SQ, McPhaul C, Li JZ, Garuti R, Kinch L, Grishin NV, Cohen JC, et al. A sequence variation (I148M) in PNPLA3 associated with nonalcoholic fatty liver disease disrupts triglyceride hydrolysis. J Biol Chem. 2010;285:6706–15.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Baulande S, Lasnier F, Lucas M, Pairault J. Adiponutrin, a transmembrane protein corresponding to a novel dietary- and obesity-linked mRNA specifically expressed in the adipose lineage. J Biol Chem. 2001;276:33336–44.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Jenkins CM, Mancuso DJ, Yan W, Sims HF, Gibson B, Gross RW. Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J Biol Chem. 2004;279:48968–75.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bruschi FV, Claudel T, Tardelli M, Caligiuri A, Stulnig TM, Marra F, Trauner M. The PNPLA3 I148M variant modulates the fibrogenic phenotype of human hepatic stellate cells. Hepatology. 2017;65:1875–90.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Huang YC, Cohen JC, Hobbs HH. Expression and characterization of a PNPLA3 protein isoform (I148M) associated with nonalcoholic fatty liver disease. J Biol Chem. 2011;286:37085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    BasuRay S, Smagris E, Cohen JC, Hobbs HH. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology. 2017;66:1111–24.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Valenti L, Dongiovanni P. Mutant PNPLA3 I148M protein as pharmacological target for liver disease. Hepatology. 2017;66:1026–8.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Smagris E, BasuRay S, Li J, Huang YC, Lai KV, Gromada J, Cohen JC, et al. Pnpla3I148M knockin mice accumulate PNPLA3 on lipid droplets and develop hepatic steatosis. Hepatology. 2015;61:108–18.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chen WQ. Patatin-like phospholipase domain-containing 3/adiponutrin deficiency in mice is not associated with fatty liver disease (vol 52, pg 1134, 2010). Hepatology. 2010;52:2250.CrossRefGoogle Scholar
  34. 34.
    Li JZ, Huang Y, Karaman R, Ivanova PT, Brown HA, Roddy T, Castro-Perez J, et al. Chronic overexpression of PNPLA3I148M in mouse liver causes hepatic steatosis. J Clin Invest. 2012;122:4130–44.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wang Y, Kory N, BasuRay S, Cohen JC, Hobbs HH. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology. 2019;69:2427–41.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Pirazzi C, Valenti L, Motta BM, Pingitore P, Hedfalk K, Mancina RM, Burza MA, et al. PNPLA3 has retinyl-palmitate lipase activity in human hepatic stellate cells. Hum Mol Genet. 2014;23:4077–85.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Eslam M, Mangia A, Berg T, Chan HLY, Irving WL, Dore GJ, Abate ML, et al. Diverse impacts of the rs58542926 E167K variant in TM6SF2 on viral and metabolic liver disease phenotypes. Hepatology. 2016;64:34–46.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Holmen OL, Zhang H, Fan YB, Hovelson DH, Schmidt EM, Zhou W, Guo YH, et al. Systematic evaluation of coding variation identifies a candidate causal variant in TM6SF2 influencing total cholesterol and myocardial infarction risk. Nat Genet. 2014;46:345–51.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kozlitina J, Smagris E, Stender S, Nordestgaard BG, Zhou HH, Tybjaerg-Hansen A, Vogt TF, et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46:352–6.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Liu YL, Reeves HL, Burt AD, Tiniakos D, McPherson S, Leathart JBS, Allison MED, et al. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:4309.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dongiovanni P, Petta S, Maglio C, Fracanzani AL, Pipitone R, Mozzi E, Motta BM, et al. Transmembrane 6 superfamily member 2 gene variant disentangles nonalcoholic steatohepatitis from cardiovascular disease. Hepatology. 2015;61:506–14.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Buch S, Stickel F, Trepo E, Way M, Herrmann A, Nischalke HD, Brosch M, et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat Genet. 2015;47:1443–8.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Mahdessian H, Taxiarchis A, Popov S, Silveira A, Franco-Cereceda A, Hamsten A, Eriksson P, et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content. Proc Natl Acad Sci U S A. 2014;111:8913–8.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Li T-T, Li T-H, Peng J, He B, Liu L-S, Wei D-H, Jiang Z-S, et al. TM6SF2: a novel target for plasma lipid regulation. Atherosclerosis. 2018;268:170–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Speliotes EK, Yerges-Armstrong LM, Wu J, Hernaez R, Kim LJ, Palmer CD, Gudnason V, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7:e1001324.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Palmer ND, Musani SK, Yerges-Armstrong LM, Feitosa MF, Bielak LF, Hernaez R, Kahali B, et al. Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of african and hispanic descent. Hepatology. 2013;58:966–75.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Santoro N, Zhang CK, Zhao HY, Pakstis AJ, Kim G, Kursawe R, Dykas DJ, et al. Variant in the glucokinase regulatory protein (GCKR) gene is associated with fatty liver in obese children and adolescents. Hepatology. 2012;55:781–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Valenti. Unraveling the genetics of fatty liver in obese children: additive effect of P446L GCKR and I148M PNPLA3 polymorphisms (vol 55, pg 661, 2012). Hepatology 2012;55:1311.Google Scholar
  49. 49.
    Beer NL, Tribble ND, McCulloch LJ, Roos C, Johnson PR, Orho-Melander M, Gloyn AL. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum Mol Genet. 2009;18:4081–8.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mancina RM, Dongiovanni P, Petta S, Pingitore P, Meroni M, Rametta R, Boren J, et al. The MBOAT7-TMC4 variant rs641738 increases risk of nonalcoholic fatty liver disease in individuals of european descent. Gastroenterology. 2016;150:1219–30. e1216CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Donati B, Dongiovanni P, Romeo S, Meroni M, McCain M, Miele L, Petta S, et al. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep. 2017;7:4492.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Thabet K, Asimakopoulos A, Shojaei M, Romero-Gomez M, Mangia A, Irving WL, Berg T, et al. MBOAT7 rs641738 increases risk of liver inflammation and transition to fibrosis in chronic hepatitis C. Nat Commun. 2016;7:12757.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Thabet K, Chan HLY, Petta S, Mangia A, Berg T, Boonstra A, Brouwer WP, et al. The membrane-bound O-acyltransferase domain-containing 7 variant rs641738 increases inflammation and fibrosis in chronic hepatitis B. Hepatology. 2017;65:1840–50.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Luukkonen PK, Zhou Y, Hyotylainen T, Leivonen M, Arola J, Orho-Melander M, Oresic M, et al. The MBOAT7 variant rs641738 alters hepatic phosphatidylinositols and increases severity of non-alcoholic fatty liver disease in humans. J Hepatol. 2016;65:1263–5.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Abul-Husn NS, Cheng X, Li AH, Xin Y, Schurmann C, Stevis P, Liu Y, et al. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med. 2018;378:1096–106.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Yang J, Trepo E, Nahon P, Cao Q, Moreno C, Letouze E, Imbeaud S, et al. A 17-beta-hydroxysteroid dehydrogenase 13 variant protects from hepatocellular carcinoma development in alcoholic liver disease. Hepatology. 2019;70:231–40.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ma Y, Belyaeva OV, Brown PM, Fujita K, Valles K, Karki S, de Boer YS, et al. 17-beta hydroxysteroid dehydrogenase 13 is a hepatic retinol dehydrogenase associated with histological features of nonalcoholic fatty liver disease. Hepatology. 2019;69(4):1504–19.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kozlitina J, Stender S, Hobbs HH, Cohen JC. HSD17B13 and chronic liver disease in blacks and hispanics. N Engl J Med. 2018;379:1876–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Mohlenberg M, Terczynska-Dyla E, Thomsen KL, George J, Eslam M, Gronbaek H, Hartmann R. The role of IFN in the development of NAFLD and NASH. Cytokine. 2019;124:154519.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Dongiovanni P, Valenti L, Rametta R, Daly AK, Nobili V, Mozzi E, Leathart JBS, et al. Genetic variants regulating insulin receptor signalling are associated with the severity of liver damage in patients with non-alcoholic fatty liver disease. Gut. 2010;59:267–73.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Anstee QM, Darlay R, Leathart JB, Clement J, Clement K, Aithal GP, Valenti L, et al. Genome-wide association analysis confirms importance of PNPLA3 and identifies novel variants associated with histologically progressive steatohepatitis in NAFLD. Hepatology. 2012;56:265a–6a.Google Scholar
  62. 62.
    Kitamoto A, Kitamoto T, Nakamura T, Ogawa Y, Yoneda M, Hyogo H, Ochi H, et al. Association of polymorphisms in GCKR and TRIB1 with nonalcoholic fatty liver disease and metabolic syndrome traits. Endocr J. 2014;61:683–9.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Makishima S, Boonvisut S, Ishizuka Y, Watanabe K, Nakayama K, Iwamoto S. Sin3A-associated protein, 18 kDa, a novel binding partner of TRIB1, regulates MTTP expression. J Lipid Res. 2015;56:1145–52.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Ishizuka Y, Nakayama K, Ogawa A, Makishima S, Boonvisut S, Hirao A, Iwasaki Y, et al. TRIB1 downregulates hepatic lipogenesis and glycogenesis via multiple molecular interactions. J Mol Endocrinol. 2014;52:145–58.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Metwally M, Bayoumi A, Romero-Gomez M, Thabet K, John M, Adams LA, Huo X, et al. A polymorphism in the Irisin-encoding gene (FNDC5) associates with hepatic steatosis by differential miRNA binding to the 3’UTR. J Hepatol. 2019;70:494–500.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Agarwal P, Srivastava R, Srivastava AK, Ali S, Datta M. miR-135a targets IRS2 and regulates insulin signaling and glucose uptake in the diabetic gastrocnemius skeletal muscle. BBA-Mol Basis Dis. 2013;1832:1294–303.CrossRefGoogle Scholar
  67. 67.
    Kurdiova T, Balaz M, Vician M, Maderova D, Vlcek M, Valkovic L, Srbecky M, et al. Effects of obesity, diabetes and exercise on Fndc5 gene expression and irisin release in human skeletal muscle and adipose tissue: in vivo and in vitro studies. J Phys London. 2014;592:1091–107.CrossRefGoogle Scholar
  68. 68.
    Liu TY, Xiong XQ, Ren XS, Zhao MX, Shi CX, Wang JJ, Zhou YB, et al. FNDC5 alleviates hepatosteatosis by restoring AMPK/mTOR-mediated autophagy, fatty acid oxidation, and lipogenesis in mice. Diabetes. 2016;65:3262–75.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gupta AC, Misra R, Sakhuja P, Singh Y, Basir SF, Sarin SK. Association of adiponectin gene functional polymorphisms (-11377C/G and +45T/G) with nonalcoholic fatty liver disease. Gene. 2012;496:63–7.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Dongiovanni P, Rametta R, Fracanzani AL, Benedan L, Borroni V, Maggioni P, Maggioni M, et al. Lack of association between peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with non-alcoholic fatty liver disease: a case control study. BMC Gastroenterol. 2010;10:102.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Chen SH, Li YM, Li SJ, Yu CH. A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio. J Gastroenterol Hepatol. 2008;23:1415–8.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Valenti L, Motta BM, Alisi A, Sartorelli R, Buonaiuto G, Dongiovanni P, Rametta R, et al. LPIN1 rs13412852 polymorphism in pediatric nonalcoholic fatty liver disease. J Pediatr Gastroenterol Nutr. 2012;54:588–93.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Auinger A, Valenti L, Pfeuffer M, Helwig U, Herrmann J, Fracanzani AL, Dongiovanni P, et al. A promoter polymorphism in the liver-specific fatty acid transport protein 5 is associated with features of the metabolic syndrome and steatosis. Horm Metab Res. 2010;42:854–9.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fares R, Petta S, Lombardi R, Grimaudo S, Dongiovanni P, Pipitone R, Rametta R, et al. The UCP2-866 G > A promoter region polymorphism is associated with nonalcoholic steatohepatitis. Liver Int. 2015;35:1574–80.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Berardi MJ, Chou JJ. Fatty acid flippase activity of UCP2 is essential for its proton transport in mitochondria. Cell Metab. 2014;20:541–52.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Al-Serri A, Anstee QM, Valenti L, Nobili V, Leathart JBS, Dongiovanni P, Patch J, et al. The SOD2 C47T polymorphism influences NAFLD fibrosis severity: evidence from case-control and intra-familial allele association studies. J Hepatol. 2012;56:448–54.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Namikawa C, Shu-Ping Z, Vyselaar JR, Nozaki Y, Nemoto Y, Ono M, Akisawa N, et al. Polymorphisms of microsomal triglyceride transfer protein gene and manganese superoxide dismutase gene in non-alcoholic steatohepatitis. J Hepatol. 2004;40:781–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Eslam M, George J. Genome-wide association studies and hepatitis C: harvesting the benefits of the genomic revolution. Semin Liver Dis. 2015;35:402–20.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Eslam M, George J. Targeting IFN-: therapeutic implications. Expert Opin Ther Targets. 2016;20:1425–32.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Eslam M, Hashem AM, Leung R, Romero-Gomez M, Berg T, Dore GJ, Chan HLK, et al. Interferon-lambda rs12979860 genotype and liver fibrosis in viral and non-viral chronic liver disease. Nat Commun. 2015;6:6422.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Eslam M, Hashem AM, Romero-Gomez M, Berg T, Dore GJ, Mangia A, Chan HLY, et al. FibroGENE: a gene-based model for staging liver fibrosis. J Hepatol. 2016;64:390–8.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Petta S, Valenti L, Tuttolomondo A, Dongiovanni P, Pipitone RM, Camma C, Cabibi D, et al. Interferon lambda 4 rs368234815 TT >delta G variant is associated with liver damage in patients with nonalcoholic fatty liver disease. Hepatology. 2017;66:1885–93.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Eslam M, McLeod D, Kelaeng KS, Mangia A, Berg T, Thabet K, Irving WL, et al. IFN-lambda 3, not IFN-lambda 4, likely mediates IFNL3-IFNL4 haplotype-dependent hepatic inflammation and fibrosis. Nat Genet. 2017;49:795–800.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Miele L, Beale G, Patman G, Nobili V, Leathart J, Grieco A, Abate M, et al. The Kruppel-Like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology. 2008;135:282–91.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Patin E, Kutalik Z, Guergnon J, Bibert S, Nalpas B, Jouanguy E, Munteanu M, et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. Gastroenterology. 2012;143:1244–52.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Musso G, Cassader M, De Michieli F, Paschetta E, Pinach S, Saba F, Bongiovanni D, et al. MERTK rs4374383 variant predicts incident nonalcoholic fatty liver disease and diabetes: role of mononuclear cell activation and adipokine response to dietary fat. Hum Mol Genet. 2017;26:1747–58.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Petta S, Valenti L, Marra F, Grimaudo S, Tripodo C, Bugianesi E, Camma C, et al. MERTK rs4374383 polymorphism affects the severity of fibrosis in non-alcoholic fatty liver disease. J Hepatol. 2016;64:682–90.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet. 2013;14:483–95.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Pickrell JK, Berisa T, Liu JZ, Segurel L, Tung JY, Hinds DA. Detection and interpretation of shared genetic influences on 42 human traits (vol 48, pg 709, 2016). Nat Genet. 2016;48:1296.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Visscher PM, Yang J. A plethora of pleiotropy across complex traits. Nat Genet. 2016;48:707–8.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Chesmore K, Bartlett J, Williams SM. The ubiquity of pleiotropy in human disease. Hum Genet. 2018;137:39–44.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cotsapas C, Hafler DA. Immune-mediated disease genetics: the shared basis of pathogenesis. Trends Immunol. 2013;34:22–6.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    O’Donovan MC, Owen MJ. The implications of the shared genetics of psychiatric disorders. Nat Med. 2016;22:1214–9.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Verma A, Ritchie MD. Current scope and challenges in phenome-wide association studies. Curr Epidemiol Rep. 2017;4:321–9.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Liu DJ, Peloso GM, Yu H, Butterworth AS, Wang X, Mahajan A, Saleheen D, et al. Exome-wide association study of plasma lipids in > 300,000 individuals. Nat Genet. 2017;49:1758–66.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Diogo D, Tian C, Franklin CS, Alanne-Kinnunen M, March M, Spencer CCA, Vangjeli C, et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9:4285.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Hardy T, Zeybel M, Day CP, Dipper C, Masson S, McPherson S, Henderson E, et al. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2017;66:1321–8.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Ahrens M, Ammerpohl O, von Schonfels W, Kolarova J, Bens S, Itzel T, Teufel A, et al. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Murphy SK, Yang HN, Moylan CA, Pang H, Dellinger A, Abdelmalek MF, Garrett ME, et al. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–87.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Ma J, Nano J, Ding J, Zheng Y, Hennein R, Liu C, Speliotes EK, et al. A peripheral blood DNA methylation signature of hepatic fat reveals a potential causal pathway for non-alcoholic fatty liver disease. Diabetes. 2019;68(5):1073–83.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Mann J, Chu DCK, Maxwell A, Oakley F, Zhu NL, Tsukamoto H, Mann DA. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138:705–U374.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mayer SC, Gilsbach R, Preissl S, Ordonez EBM, Schnick T, Beetz N, Lother A, et al. Adrenergic repression of the epigenetic reader MeCP2 facilitates cardiac adaptation in chronic heart failure. Circ Res. 2015;117:622–33.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Kitamoto T, Kitamoto A, Ogawa Y, Honda Y, Imajo K, Saito S, Yoneda M, et al. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic fatty liver disease. J Hepatol. 2015;63:494–502.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Baker PR 2nd, Friedman JE. Mitochondrial role in the neonatal predisposition to developing nonalcoholic fatty liver disease. J Clin Invest. 2018;128:3692–703.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Li Y. Epigenetic mechanisms link maternal diets and gut microbiome to obesity in the offspring. Front Genet. 2018;9:342.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Suter MA, Ma J, Vuguin PM, Hartil K, Fiallo A, Harris RA, Charron MJ, et al. In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model. Am J Obstet Gynecol. 2014;210:463. e461–463 e411.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Suter MA, Chen A, Burdine MS, Choudhury M, Harris RA, Lane RH, Friedman JE, et al. A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates. FASEB J. 2012;26:5106–14.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Zeybel M, Hardy T, Wong YK, Mathers JC, Fox CR, Gackowska A, Oakley F, et al. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med. 2012;18:1369–77.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Sookoian S, Rosselli MS, Gemma C, Burgueno AL, Fernandez Gianotti T, Castano GO, Pirola CJ. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Gemma C, Sookoian S, Alvarinas J, Garcia SI, Quintana L, Kanevsky D, Gonzalez CD, et al. Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity. 2009;17:1032–9.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Burgueno AL, Cabrerizo R, Mansilla NG, Sookoian S, Pirola CJ. Maternal high-fat intake during pregnancy programs metabolic-syndrome-related phenotypes through liver mitochondrial DNA copy number and transcriptional activity of liver PPARGC1A. J Nutr Biochem. 2013;24:6–13.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational developmental programming of ovarian reserve. Sci Rep. 2015;5:16175.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Wei YC, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A. 2014;111:1873–8.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Barres R, Zierath JR. The role of diet and exercise in the transgenerational epigenetic landscape of T2DM. Nat Rev Endocrinol. 2016;12:441–51.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Ayonrinde OT, Oddy WH, Adams LA, Mori TA, Beilin LJ, de Klerk N, Olynyk JK. Infant nutrition and maternal obesity influence the risk of non-alcoholic fatty liver disease in adolescents. J Hepatol. 2017;67:568–76.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Ajmera VH, Terrault NA, VanWagner LB, Sarkar M, Lewis CE, Carr JJ, Gunderson EP. Longer lactation duration is associated with decreased prevalence of non-alcoholic fatty liver disease in women. J Hepatol. 2019;70:126–32.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Laker RC, Connelly JJ, Yan Z. Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1a gene and age-dependent metabolic dysfunction in the offspring. Diabetes 2014; 63: 160521611. Diabetes. 2014;63:E6–7.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Zeybel M, Luli S, Sabater L, Hardy T, Oakley F, Leslie J, Page A, et al. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin A. Mol Ther. 2017;25:218–31.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Markets RA. Global epigenetics market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies and forecasts, 2018 to 2026. ID: 4747991 March 2018.Google Scholar
  120. 120.
    Navada SC, Steinmann J, Lubbert M, Silverman LR. Clinical development of demethylating agents in hematology. J Clin Investig. 2014;124:40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, Klasic M, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44:5615–28.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Xu X, Tan X, Tampe B, Wilhelmi T, Hulshoff MS, Saito S, Moser T, et al. High-fidelity CRISPR/Cas9- based gene-specific hydroxymethylation rescues gene expression and attenuates renal fibrosis. Nat Commun. 2018;9:3509.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Liu XS, Wu H, Krzisch M, Wu X, Graef J, Muffat J, Hnisz D, et al. Rescue of fragile X syndrome neurons by DNA methylation editing of the FMR1 gene. Cell. 2018;172:979–92. e976CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Saunders MA, Liang H, Li WH. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci U S A. 2007;104:3300–5.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Liu CH, Ampuero J, Gil-Gomez A, Montero-Vallejo R, Rojas A, Munoz-Hernandez R, Gallego-Duran R, et al. miRNAs in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2018;69(6):1335–48.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat Methods. 2013;10:1003–5.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, et al. Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology. 2008;48:1810–20.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Hsu SH, Wang B, Kota J, Yu JH, Costinean S, Kutay H, Yu LB, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Investig. 2012;122:2871–83.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Csak T, Bala S, Lippai D, Satishchandran A, Catalano D, Kodys K, Szabo G. microRNA-122 regulates hypoxia-inducible factor-1 and vimentin in hepatocytes and correlates with fibrosis in diet-induced steatohepatitis. Liver Int. 2015;35:532–41.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Atanasovska B, Rensen SS, van der Sijde MR, Marsman G, Kumar V, Jonkers I, Withoff S, et al. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology. 2017;66:794–808.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Zhao XY, Xiong XL, Liu TY, Mi L, Peng XL, Rui C, Guo L, et al. Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun. 2018;9:2986.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Eslam M, George J. Genetic insights for drug development in NAFLD. Trends Pharmacol Sci. 2019;40(7):506–16.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rasha El Sharkawy
    • 1
  • Jacob George
    • 1
  • Mohammed Eslam
    • 1
    Email author
  1. 1.Storr Liver CentreWestmead Institute for Medical Research, Westmead Hospital and University of SydneySydneyAustralia

Personalised recommendations