Advertisement

Modelling of Velocity Distribution in a Channel Partly Covered by Submerged Vegetation

  • Monika B. KalinowskaEmail author
  • Kaisa Västilä
  • Adam Kozioł
  • Paweł M. Rowiński
  • Adam Kiczko
  • Janusz Kubrak
Conference paper
  • 58 Downloads
Part of the GeoPlanet: Earth and Planetary Sciences book series (GEPS)

Abstract

The presence of vegetation has a significant impact on the flow conditions in streams and rivers by changing the roughness, which has an important effect on flow velocity distribution. The article focuses on modelling and analysing the depth-averaged velocity distribution in a rectangular channel partially covered by submerged grassy vegetation. The possibility of using two selected models (CCHE2D flow model and Shiono and Knight model) has been evaluated using the measurement data from a laboratory experiment. The measurements and modelling have been carried out for different flow conditions. Applied models calibrated for low velocities were found to be extendable to the same vegetative condition during high velocities.

Keywords

Submerged vegetation CCHE2D Shiono and knight model Depth-averaged velocity distribution Roughnes Laboratory experiment Streams Rivers 

Notes

Acknowledgements

This study was supported within statutory activities No. 3841/E-41/S/2019 of the Ministry of Science and Higher Education of Poland, by Maa- ja vesitekniikan tuki ry (No. 33271) and by Maj and Tor Nessling Foundation (No. 201800045). We are grateful for the doctoral student Gerardo Caroppi for conducting the measurements.

References

  1. Ackers P (1991) Hydraulic design of straight compound channels. vol 1—summary and design method, vol 2—appendices. SR Report 281. HR Wallingford, UKGoogle Scholar
  2. Box W, Västilä K, Järvelä J (2018) Transport and deposition of fine sediment in a channel partly covered by flexible vegetation. In: Paquier A, Rivière N (eds) River Flow 2018.  https://doi.org/10.1051/e3sconf/20184002016CrossRefGoogle Scholar
  3. Caroppi G, Västilä K, Järvelä J, Rowinski P, Giugni M (2019) Turbulence at water-vegetation interface in open channel flow: experiments with natural-like plants. Adv Water Resour 127:180–191.  https://doi.org/10.1016/j.advwatres.2019.03.013ADSCrossRefGoogle Scholar
  4. Jesson MA, Sterling M, Bridgeman J (2013) Despiking velocity time-series-optimisation through the combination of spike detection and replacementmethods. Flow Meas Instrum 30:45–51.  https://doi.org/10.1016/j.flowmeasinst.2013.01.007CrossRefGoogle Scholar
  5. Jesson MA, Bridgeman J, Sterling M (2015) Novel software developments for the automated post-processing of high volumes of velocity time-series. Adv Eng Softw 89:36–42.  https://doi.org/10.1016/j.advengsoft.2015.06.007CrossRefGoogle Scholar
  6. Jia Y, Wang SSY (2001) CCHE2D: two-dimensional hydrodynamic and sediment transport model for unsteady open channel flows over loose bed. Technical report no. NCCHE-TR-2001-1, National Center for Computational Hydroscience and Engineering, The University of Mississippi, USAGoogle Scholar
  7. Kalinowska M, Västilä K, Rowiński PM (2019) Solute transport in complex natural flows. Acta Geophys 67:939–942.  https://doi.org/10.1007/s11600-019-00308-zADSCrossRefGoogle Scholar
  8. Knight DW, Omran M, Tang X (2007) Modelling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows. J Hydraul Eng 133(1):39–47CrossRefGoogle Scholar
  9. Knight DW, Yuen KW, Al-Hamid AA (1994) Boundary shear stress distributions in open channel flow. In: Beven KJ, Chatwin PC, Millibank JH (eds) Mixing and transport in the environment. Wiley, pp 51–87Google Scholar
  10. Knight DW, Tang X, Sterling M, Shiono K, McGahey C (2010) Solving open channel flow problems with a simple lateral distribution model. In: River flow 2010, Proceedings of the international conference on fluvial hydraulics, Braunschweig, Germany, pp 8–10Google Scholar
  11. Kordi H, Amini R, Zahiri A, Kordi E (2015) Improved Shiono and Knight method for overflow modeling. J Hydrol Eng 20(12):04015041CrossRefGoogle Scholar
  12. Kozioł A, Kubrak J, Kubrak E, Krukowski M, Kiczko A (2016) Distributions of velocity in compound channels with high vegetation on floodplains. Acta Scientiarum Polonorum Formatio Circumiectus 15(4):227–241.  https://doi.org/10.15576/ASP.FC/2016.15.4.227CrossRefGoogle Scholar
  13. Kubrak J, Rowiński PM (2007) Effects of variation of banks roughness in open channels on flow conveyance. Publ Inst Geophys Pol Acad Sci E-7(401):137–148Google Scholar
  14. Nepf HM (2012) Flow and transport in regions with aquatic vegetation. Annu Rev Fluid Mech 44:123–142.  https://doi.org/10.1146/annurev-fluid-120710-101048ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. Parsheh M, Sotiropoulos F, Porté-Agel F (2010) Estimation of power spectra of acoustic-doppler velocimetry data contaminated with intermittent spikes. J Hydraul Eng 136:368–378.  https://doi.org/10.1061/(ASCE)HY.1943-7900.0000202CrossRefGoogle Scholar
  16. Rameshwaran P, Shiono K (2007) Quasi two-dimensional model for straight overbank flows through emergent. J Hydraul Res 45(3):302–315CrossRefGoogle Scholar
  17. Rowiński PM, Västilä K, Aberle J, Järvelä J, Kalinowska MB (2018) How vegetation can aid in coping with river management challenges: a brief review. Ecohydrol Hydrobiol 18(4):345–354.  https://doi.org/10.1016/j.ecohyd.2018.07.003CrossRefGoogle Scholar
  18. Shiono K, Knight DW (1990) Mathematical models of flow in two or multi stage straight channels. In: International conference on river flood hydraulics, pp 229–238Google Scholar
  19. Shiono K, Knight DW (1991) Turbulent open-channel flows with variable depth across the channel. J Fluid Mech 222:617–646ADSCrossRefGoogle Scholar
  20. Shiono K, Rameshwaran P (2015) Mathematical modelling of bed shear stress and depth averaged velocity for emergent vegetation on floodplain in compound channel. In: E-Proceedings of the 36th IAHR World Congress, 28Google Scholar
  21. Shiono K, Takeda M, Yang K, Sugihara Y, Ishigaki T (2012) Modeling of vegetated rivers for in bank and overbank flows. In: River flow 2012—Proceedings of the international conference on fluvial hydraulics, vol 1, pp 263–269Google Scholar
  22. Tang X, Knight DW (2009) Lateral distributions of streamwise velocity in compound channels with partially vegetated floodplains. Sci China Ser E: Technol Sci 52(11):3357–3362.  https://doi.org/10.1007/s11431-009-0342-7CrossRefzbMATHGoogle Scholar
  23. Västilä K, Järvelä J (2018) Characterizing natural riparian vegetation for modeling of flow and suspended sediment transport. J Soils Sediments 18(10):3114–3130.  https://doi.org/10.1007/s11368-017-1776-3CrossRefGoogle Scholar
  24. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Fachgruppe 1 (Mathematik) 5:58–76 (also as: “Mechanical Similitude and Turbulence”, Tech. Mem. NACA, no. 611, 1931)Google Scholar
  25. Ye J, McCorquodale JA (1997) Depth-averaged hydrodynamic model in curvilinear collocated grid. J Hydraul Eng ASCE 123(5):380–388CrossRefGoogle Scholar
  26. Zhang Y (2005) CCHE2D mesh generator users’ manual—version 2.50. NCCHE technical report, NCCHE-TR-2005-01Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Monika B. Kalinowska
    • 1
    Email author
  • Kaisa Västilä
    • 2
  • Adam Kozioł
    • 3
  • Paweł M. Rowiński
    • 1
  • Adam Kiczko
    • 3
  • Janusz Kubrak
    • 3
  1. 1.Institute of GeophysicsPolish Academy of SciencesWarsawPoland
  2. 2.Aalto University School of EngineeringAaltoFinland
  3. 3.Warsaw University of Life SciencesWarsawPoland

Personalised recommendations