Advertisement

A Preliminary Study of the Impact of Lateral Head Orientations on the Current Distributions During tDCS

  • Bo SongEmail author
  • Marilia Menezes de Oliveira
  • Shuaifang Wang
  • Yan Li
  • Peng Wen
  • Tony Ahfock
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11976)

Abstract

This numerical study pre-validated the impact of lateral head orientations on the current distributions in the brain region during transcranial direct current stimulation (tDCS). A four-layer (scalp, skull, CSF, brain) real shape human head model was constructed with two electrodes configurations (C3-C4, C3-Fp2) and incremental downward displacement (0.5 mm) of the brain due to gravitational force. Sensitivity analysis was conducted on the influence of brain displacement during tDCS. Results of this preliminary study demonstrated that the cerebral current distribution was sensitive to the gravity-induced downward movement of the brain during tDCS, which suggested that lateral head orientations could be a new parameter to consider during tDCS and further research resources could be allocated in the realistic human head based studies to follow up this study. This finding should help both tDCS research and clinical trials to predict the stimulation result more precisely.

Keywords

tDCS Human head modelling Lateral head orientation 

References

  1. 1.
    Sadleir, R.J., Vannorsdall, T.D., Schretlen, D.J., Gordon, B.: Transcranial direct current stimulation (tDCS) in a realistic head model. Neuroimage 51, 1310–1318 (2010)CrossRefGoogle Scholar
  2. 2.
    DaSilva, A.F., Volz, M.S., Bikson, M., Fregni, F.: Electrode positioning and montage in transcranial direct current stimulation. J. Vis. Exp. (2011)Google Scholar
  3. 3.
    Wagner, T., Valero-Cabre, A., Pascual-Leone, A.: Noninvasive human brain stimulation. Ann. Rev. Biomed. Eng. 9, 527–565 (2007)CrossRefGoogle Scholar
  4. 4.
    Wagner, T., Fregni, F., Fecteau, S., Grodzinsky, A., Zahn, M., Pascual-Leone, A.: Transcranial direct current stimulation: a computer-based human model study. Neuroimage 35, 1113–1124 (2007)CrossRefGoogle Scholar
  5. 5.
    Miranda, P.C., Lomarev, M., Hallett, M.: Modeling the current distribution during transcranial direct current stimulation. Clin. Neurophysiol. 117, 1623–1629 (2006)CrossRefGoogle Scholar
  6. 6.
    Letteboer, M.M.J., Willems, P.W., Viergever, M.A., Niessen, W.J.: Brain shift estimation in image-guided neurosurgery using 3-D ultrasound. IEEE Trans. Biomed. Eng. 52, 268–276 (2005)CrossRefGoogle Scholar
  7. 7.
    Shahid, S., Wen, P., Ahfock, T., Leis, J.: Effects of head geometry, coil position and CSF displacement on field distribution under transcranial magnetic stimulation. J. Med. Imaging Health Inform. 1, 271–277 (2011)CrossRefGoogle Scholar
  8. 8.
    Bijsterbosch, J.D., et al.: The effect of head orientation on subarachnoid cerebrospinal fluid distribution and its implications for neurophysiological modulation and recording techniques. Physiol. Meas. 34, N9 (2013)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Rush, S., Driscoll, D.A.: Current distribution in the brain from surface electrodes. Anesth. Analg. 47, 717–723 (1968)CrossRefGoogle Scholar
  11. 11.
    Bai, S., Loo, C., Dokos, S.: A review of computational models of transcranial electrical stimulation. Crit. Rev™. Biomed. Eng. 41, 21–35 (2013)CrossRefGoogle Scholar
  12. 12.
    Parazzini, M., Fiocchi, S., Rossi, E., Paglialonga, A., Ravazzani, P.: Transcranial direct current stimulation: estimation of the electric field and of the current density in an anatomical human head model. IEEE Trans. Biomed. Eng. 58, 1773–1780 (2011)CrossRefGoogle Scholar
  13. 13.
    Baumann, S.B., Wozny, D.R., Kelly, S.K., Meno, F.M.: The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44, 220–223 (1997)CrossRefGoogle Scholar
  14. 14.
    Oostendorp, T.F., Delbeke, J., Stegeman, D.F.: The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans. Biomed. Eng. 47, 1487–1492 (2000)CrossRefGoogle Scholar
  15. 15.
    Holdefer, R., Sadleir, R., Russell, M.: Predicted current densities in the brain during transcranial electrical stimulation. Clin. Neurophysiol. 117, 1388–1397 (2006)CrossRefGoogle Scholar
  16. 16.
    He, B.: Modeling and Imaging of Bioelectrical Activity, pp. 281–316. Springer, Boston (2004).  https://doi.org/10.1007/978-0-387-49963-5CrossRefGoogle Scholar
  17. 17.
    Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., Bikson, M.: Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2, 201–207 (2009). e201CrossRefGoogle Scholar
  18. 18.
    Song, B., Wen, P., Ahfock, T., Li, Y.: Numeric investigation of brain tumor influence on the current distributions during transcranial direct current stimulation. IEEE Trans. Biomed. Eng. 63, 176–187 (2016)CrossRefGoogle Scholar
  19. 19.
    Boggio, P.S., et al.: Enhancement of non-dominant hand motor function by anodal transcranial direct current stimulation. Neurosci. Lett. 404, 232–236 (2006)CrossRefGoogle Scholar
  20. 20.
    Boggio, P.S., Nunes, A., Rigonatti, S.P., Nitsche, M.A., Pascual-Leone, A., Fregni, F.: Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients. Restor. Neurol. Neurosci. 25, 123–129 (2007)Google Scholar
  21. 21.
    Utz, K.S., Dimova, V., Oppenländer, K., Kerkhoff, G.: Electrified minds: transcranial direct current stimulation (tDCS) and galvanic vestibular stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology—a review of current data and future implications. Neuropsychologia 48, 2789–2810 (2010)CrossRefGoogle Scholar
  22. 22.
    Koenigs, M., Ukueberuwa, D., Campion, P., Grafman, J., Wassermann, E.: Bilateral frontal transcranial direct current stimulation: failure to replicate classic findings in healthy subjects. Clin. Neurophysiol. 120, 80–84 (2009)CrossRefGoogle Scholar
  23. 23.
    Peterchev, A.V., Rosa, M.A., Deng, Z.-D., Prudic, J., Lisanby, S.H.: ECT stimulus parameters: rethinking dosage. J. ECT 26, 159 (2010)CrossRefGoogle Scholar
  24. 24.
    Datta, A., Elwassif, M., Battaglia, F., Bikson, M.: Transcranial current stimulation focality using disc and ring electrode configurations: FEM analysis. J. Neural Eng. 5, 163 (2008)CrossRefGoogle Scholar
  25. 25.
    Faria, P., Hallett, M., Miranda, P.C.: A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J. Neural Eng. 8, 066017 (2011)CrossRefGoogle Scholar
  26. 26.
    Hu, J., et al.: Intraoperative brain shift prediction using a 3D inhomogeneous patient-specific finite element model. J. Neurosurg. 106, 164–169 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Bo Song
    • 1
    Email author
  • Marilia Menezes de Oliveira
    • 2
  • Shuaifang Wang
    • 1
  • Yan Li
    • 1
  • Peng Wen
    • 1
  • Tony Ahfock
    • 1
  1. 1.Faculty of Health, Engineering and SciencesUniversity of Southern QueenslandToowoombaAustralia
  2. 2.Faculty of ScienceUniversity of SydneySydneyAustralia

Personalised recommendations