Advertisement

Galois Action on Knots II: Proalgebraic String Links and Knots

  • Hidekazu FurushoEmail author
Conference paper
  • 26 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 314)

Abstract

We discuss an action of the Grothendieck-Teichmüller proalgebraic group on the linear span of proalgebraic tangles, oriented tangles completed by a filtration of Vassiliev. The action yields a motivic structure on tangles. We derive distinguished properties of the action particularly on proalgebraic string links and on proalgebraic knots which can not be observed in the action on proalgebraic braids. By exploiting the properties, we explicitly calculate the inverse image of the trivial (the chordless) chord diagram under the Kontsevich isomorphism.

Keywords

Proalgebraic tangles Chord diagrams Grothendieck-Teichmüller group Associators 

Notes

Acknowledgements

Part of the paper was written at Max Planck Institute for Mathematics. The author also thanks the institute for its hospitality. The referees’ efforts to make this paper better is gratefully acknowledged. This work was supported by Grant-in-Aid for Young Scientists (A) 24684001.

References

  1. 1.
    Alekseev, A., Torossian, C.: Kontsevich deformation quantization and flat connections. Commun. Math. Phys. 300(1), 47–64 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Alekseev, A., Torossian, C.: The Kashiwara-Vergne conjecture and Drinfeld’s associators, Ann. Math. 175(2), 415–463 (2012)Google Scholar
  3. 3.
    Alekseev, A., Enriquez, B., Torossian, C.: Drinfeld associators, braid groups and explicit solutions of the Kashiwara-Vergne equations. Publ. Math. Inst. Hautes Études Sci. 112, 143–189 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, 17. Société Mathématique de France, Paris (2004)zbMATHGoogle Scholar
  5. 5.
    Bar-Natan, D.: Vassiliev and quantum invariants of braids. In: Proceedings of Symposia in Applied Mathematics, vol. 51, 129–144. American Mathematical Society, Providence, RI (1996). The interface of knots and physics (San Francisco, CA, 1995)Google Scholar
  6. 6.
    Bar-Natan, D.: Non-Associative Tangles Geometric Topology (Athens, GA, 1993). AMS/IP Studies in Advanced Mathematics, 2.1, pp. 139–183. American Mathematical Society, Providence, RI (1997)Google Scholar
  7. 7.
    Bar-Natan, D.: On associators and the Grothendieck-Teichmuller group I. Selecta Math. (N.S.) 4(2), 183–212 (1998)Google Scholar
  8. 8.
    Bar-Natan, D., Le, T.T.Q., Thurston, D.: Two applications of elementary knot theory to Lie algebras and Vassiliev invariants. Geom. Topol. 7, 1–31 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Belyĭ, G. V.: Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43(2), 267–276, 479 (1979)Google Scholar
  10. 10.
    Brown, F.: Mixed tate motives over Spec(\(Z\)). Ann. Math. 175(2), 949–976 (2012)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Brown, F.: Single-valued periods and multiple zeta values. Forum Math. Sigma 2(e25), 37 (2014)Google Scholar
  12. 12.
    Cartier, P.: Construction combinatoire des invariants de Vassiliev-Kontsevich des nœuds. C. R. Acad. Sci. Paris Ser. I Math. 316(11), 1205–1210 (1993)Google Scholar
  13. 13.
    Chmutov, S., Duzhin, S., Mostovoy, J.: Introduction to Vassiliev Knot Invariants, Cambridge University Press, 2012Google Scholar
  14. 14.
    Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups Over \({\mathbb{Q}}\), Berkeley, CA, 1987. Mathematical Sciences Research Institute Publications, vol. 16, pp. 79–297. Springer, New York-Berlin (1989)Google Scholar
  15. 15.
    Deligne, P., Goncharov, A.: Groupes fondamentaux motiviques de Tate mixte. In: Annales Scientifiques l’Ecole Normale. Supérieure, vol. 38, no. 1, pp. 1–56 (2005)Google Scholar
  16. 16.
    Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and a group closely connected with \({\rm Gal}(\overline{\mathbb{Q}}/{\mathbb{Q}})\). Leningr. Math. J. 2(4), 829–860 (1991)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Furusho, H.: The multiple zeta value algebra and the stable derivation algebra. Publ. Res. Inst. Math. Sci. 39(4), 695–720 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    Furusho, H.: \(p\)-adic multiple zeta values I-\(p\)-adic multiple polylogarithms and the \(p\)-adic KZ equation. Inv. Math. 155(2), 253–286 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    Furusho, H.: Multiple zeta values and Grothendieck-Teichmüller groups. AMS Contemp. Math. 416, 49–82 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    Furusho, H.: \(p\)-adic multiple zeta values II—tannakian interpretations. Am. J. Math. 129(4), 1105–1144 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    Furusho, H.: Pentagon and hexagon equations. Ann. Math. 171(1), 545–556 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Furusho, H.: Galois action on knots I: action of the absolute Galois group. Quant. Topol. 8(2), 295–360 (2017)CrossRefMathSciNetzbMATHGoogle Scholar
  23. 23.
    Hain, R.: The Hodge de Rham theory of relative Malcev completion. In: Annales scientifiques de I’Ecole normale supérieure, vol. 31, no. 1, pp. 47–92 (1998)Google Scholar
  24. 24.
    Ihara, Y.: Braids, Galois groups, and some arithmetic functions. In: Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto: 99–120 p., 1991). Mathematical Society, Tokyo, Japan (1990)Google Scholar
  25. 25.
    Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)CrossRefMathSciNetzbMATHGoogle Scholar
  26. 26.
    Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995)Google Scholar
  27. 27.
    Kassel, C., Rosso, M., Turaev, V.: Quantum groups and knot invariants, Panoramas et Synthèses, 5. Société Mathématique de France, Paris (1997)Google Scholar
  28. 28.
    Kassel, C., Turaev, V.: Chord diagram invariants of tangles and graphs. Duke Math. J. 92(3), 497–552 (1998)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    Kontsevich, M.: Vassiliev’s knot invariants. In: I. M. Gel’fand Seminar Part 2. Advances in Soviet Mathematics, vol. 16, pp. 137–150. American Mathematical Society, Providence, RI (1993)Google Scholar
  30. 30.
    Le, T.T.Q., Murakami, J.: The universal Vassiliev-Kontsevich invariant for framed oriented links. Compos. Math. 102(1), 41–64 (1996)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Le, T.T.Q., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math. J. 142, 39–65 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  32. 32.
    Lochak, P., Schneps, L.: Every acyclotomic element of the profinite Grothendieck-Teichmüller group is a twist. Rev. Roum. Math. Pures Appl. 60(2), 117–128 (2015)zbMATHGoogle Scholar
  33. 33.
    Majid, S.: A Quantum Groups Primer. London Mathematical Society Lecture Note Series, vol. 292. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  34. 34.
    Piunikhin, S.: Combinatorial expression for universal Vassiliev link invariant. Comm. Math. Phys. 168(1), 1–22 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    Rossi, C.A., Willwacher, T.P.: Etingof’s conjecture about Drinfeld associators, Preprint, arXiv:1404.2047
  36. 36.
    Ševera, P., Willwacher, T.: Equivalence of formalities of the little discs operad. Duke Math. J. 160(1), 175–206 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  37. 37.
    Turaev, V.G.: Operator invariants of tangles, and R-matrices. Izv. Akad. Nauk SSSR Ser. Mat. 53(2), 1073–1107, 1135 (1989). Translation in Math. USSR-Izv. 35(2), 411–444 (1990)Google Scholar
  38. 38.
    Ünver, S.: Drinfel’d-Ihara relations for p-adic maulti-zeta values. J. Number Theory 133(5), 1435–1483 (2013)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityFuro-choJapan

Personalised recommendations