Advertisement

Arborified Multiple Zeta Values

  • Dominique ManchonEmail author
Conference paper
  • 32 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 314)

Abstract

We describe some particular finite sums of multiple zeta values which arise from J. Ecalle’s “arborification”, a process which can be described as a surjective Hopf algebra morphism from the Hopf algebra of decorated rooted forests onto a Hopf algebra of shuffles or quasi-shuffles. This formalism holds for both the iterated sum picture and the iterated integral picture. It involves a decoration of the forests by the positive integers in the first case, by only two colours in the second case.

Keywords

Multiple zeta values Rooted trees Hopf algebras Shuffle Quasi-shuffle Arborification 

References

  1. 1.
    Brown, F.: On the decomposition of motivic multiple zeta values. Galois-Teichmüller theory and arithmetic geometry. Adv. Stud. Pure Math. 63, 31–58 (2012)Google Scholar
  2. 2.
    Brown, F.: Mixed Tate motives over \({\mathbb{Z}}\). Ann. Math. 175(1), 949–976 (2012)Google Scholar
  3. 3.
    Brown, F.: Depth-graded motivic multiple zeta values, preprint, arXiv:1301.3053 (2013)
  4. 4.
    Butcher, J.C.: An algebraic theory of integration methods. Math. Comp. 26, 79–106 (1972)Google Scholar
  5. 5.
    Cartier, P.: Fonctions polylogarithmes, nombres polyzêtas et groupes pro-unipotents, Séminaire Bourbaki No 885. Astérisque 282, 137–173 (2002)Google Scholar
  6. 6.
    Connes, A., Kreimer, D.: Hopf Algebras, Renormalization and Noncommutative Geometry. Comm. Math. Phys. 199, 203–242 (1998)Google Scholar
  7. 7.
    Deligne, P., Goncharov, A.: Groupes fondamentaux motiviques de Tate mixtes. Ann. Sci. Ec. Norm. Sup. (4) 38(1), 1–56 (2005)Google Scholar
  8. 8.
    Dür, A.: Möbius functions, incidence algebras and power series representations, Lect. Notes math. 1202, Springer (1986)Google Scholar
  9. 9.
    Ecalle, J.: Les fonctions résurgentes Vol. 2, Publications Mathématiques d’Orsay (1981). Available at http://portail.mathdoc.fr/PMO/feuilleter.php?id=PMO_1981
  10. 10.
    Ecalle, J.: Singularités non abordables par la géométrie. Ann. Inst. Fourier 42(1–2), 73–164 (1992)Google Scholar
  11. 11.
    Ecalle, J., Vallet, B.: The arborification-coarborification transform: analytic, combinatorial, and algebraic aspects. Ann. Fac. Sci. Toulouse XIII(4), 575–657 (2004)Google Scholar
  12. 12.
    Eie, M., Liaw, W., Ong, Y.L.: A restricted sum formula for multiple zeta values. J. Number Theory 129, 908–921 (2009)Google Scholar
  13. 13.
    Fauvet, F., Menous, F.: Ecalle’s arborification-coarborification transforms and the Connes-Kreimer Hopf algebra. Ann. Sci. Ec. Norm. 50(1), 39–83 (2017)Google Scholar
  14. 14.
    Foissy, L.: Les algèbres de Hopf des arbres enracinés décorés I,II. Bull. Sci. Math. 126, 193–239, 249–288 (2002)Google Scholar
  15. 15.
    Hoffman, M.E.: Multiple harmonic series. Pacific J. Math. 152, 275–290 (1992)Google Scholar
  16. 16.
    Hoffman, M.E.: Quasi-shuffle products. J. Algebraic Combin. 11, 49–68 (2000)Google Scholar
  17. 17.
    Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Comp. Math. 142(2), 307–338 (2004)Google Scholar
  18. 18.
    Kaneko, M., Yamamoto, S.: A new integral-series identity of multiple zeta values and regularizations. Selecta Math. 24(3), 2499–2521 (2018)Google Scholar
  19. 19.
    Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theor. Math. Phys. 2, 303–334 (1998)Google Scholar
  20. 20.
    Murua, A.: The Hopf algebra of rooted trees, free Lie algebras, and Lie series. Found. Computational Math. 6, 387–426 (2006)Google Scholar
  21. 21.
    Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. IHES 95, 185–231 (2002)Google Scholar
  22. 22.
    Schmitt, W.: Incidence Hopf algebras. J. Pure Appl. Algebra 96, 299–330 (1994)Google Scholar
  23. 23.
    Tanaka, T.: Restricted sum formula and derivation relation for multiple zeta values. arXiv:1303.0398 (2014)
  24. 24.
    Terasoma, T.: Mixed Tate motives and multiple zeta values. Invent. Math. 149(2), 339–369 (2002)Google Scholar
  25. 25.
    Yamamoto, S.: Multiple zeta-star values and multiple integrals, preprint. arXiv:1405.6499 (2014)
  26. 26.
    Zagier, D.: Values of zeta functions and their applications. Proc. First Eur. Congress Math. 2, 497–512, Birkhäuser, Boston (1994)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.C.N.R.S. UMR 6620AubièreFrance

Personalised recommendations