Advertisement

Perren’s Strain Theory and Fracture Healing

  • Sascha Halvachizadeh
  • Hans-Christoph PapeEmail author
Chapter
  • 71 Downloads

Abstract

The healing process of fractures depends on their biomechanical environment. The distinct knowledge and understanding of the biomechanical influence on fracture healing is the basis of the definition of the treatment strategy. The primary goal in treating a fracture is to achieve prompt and functional recovery of the injured limb. The healing process is based on the biological and mechanical situation of the fracture and its environment, defined by the interplay of rigidity and elasticity of fracture fixation. These mechanical properties directly influence the biological process of fracture healing. In cases of less rigid fixation, a callus formation can be observed that bridges the fracture gap. This healing process is supported by relative stability. Contrary to that, absolute stability aims to minimize callus formation leading to direct fracture healing. Stephan M. Perren summarized these observations in his strain theory. Strain is the deformation of elements within a material that leads to breakage if a certain degree is reached. With certain fixation methods, strain within the fracture gap can be modulated leading to different degrees of stability and different biological healing processes. Each treatment has its advantages and disadvantages that should be taken into consideration individually when defining fracture treatment strategies.

Keywords

Strain theory Fracture healing Absolute and relative stability Biomechanics of fracture healing Perren’s strain theory Bone healing 

References

  1. 1.
    Ito K, Perren SM. Biology and biomechanics in fracture management. In: Rüedi TP, Buckley RE, Moran CG, editors. Arbeitsgemeinschaft für Osteosynthesefragen. AO principles of fracture management. 2nd ed. Stuttgart/New York: Thieme; 2007. p. 9–31.Google Scholar
  2. 2.
    Stephan Perren. AO principles of fracture management. Stuttgart: Thieme; 2000.Google Scholar
  3. 3.
    Giannoudis P, Tzioupis C, Almalki T, Buckley R. Fracture healing in osteoporotic fractures: is it really different? A basic science perspective. Injury. 2007;38(Suppl 1):S90–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Jagodzinski M, Krettek C. Effect of mechanical stability on fracture healing–an update. Injury. 2007;38(Suppl 1):S3–10.CrossRefGoogle Scholar
  5. 5.
    Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092:385–96.CrossRefGoogle Scholar
  6. 6.
    Wang W, Yeung KW. Bone grafts and biomaterials substitutes for bone defect repair: a review. Bioact Mater. 2017;2(4):224–47.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Dimitriou R, Tsiridis E, Giannoudis PV. Current concepts of molecular aspects of bone healing. Injury. 2005;36(12):1392–404.CrossRefGoogle Scholar
  8. 8.
    Hoppenfeld S, DeBoer P, Buckley R. Surgical exposures in orthopaedics: the anatomic approach. 4th ed. Philadelphia: Wolters Kluwer Health; 2012.Google Scholar
  9. 9.
    Gautier E, Cordey J, Mathys R, Rahn BA, Perren SM. Porosity and remodelling of plated bone after internal fixation: result of stress shielding or vascular damage? In: Ducheyne P, van der Perre G, Aubert AE, editors. Biomaterials and biomechanics 1983:proceedings of the fourth European conference on biomaterials. Amsterdam: Elsevier; 1984. p. 195–200.Google Scholar
  10. 10.
    Gautier E, Perren S, Cordey J. Effect of plate position relative to bending direction on the rigidity of a plate osteosynthesis. A theoretical analysis. Injury. 2000;31(Suppl 3):C14–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Grundnes O, Reikerås O. Blood flow and mechanical properties of healing bone: femoral osteotomies studied in rats. Acta Orthop Scand. 1992;63(5):487–91.CrossRefGoogle Scholar
  12. 12.
    Kelly PJ, Montgomery RJ, Bronk JT. Reaction of the circulatory system to injury and regeneration. Clin Orthop Relat Res. 1990;254:275–88.Google Scholar
  13. 13.
    Brookes M, Revell WJ. Blood supply of bone: scientific aspects. London: Springer; 1998.CrossRefGoogle Scholar
  14. 14.
    Rhinelander FW. Tibial blood supply in relation to fracture healing. Clin Orthop Relat Res. 1974;105:34-81.CrossRefGoogle Scholar
  15. 15.
    Eckert-Hübner K, Claes LJ. Callus tissue differentiation and vascularization under different conditions. (Abstract from Sixth Meeting of the International Society of Fracture Repair; 23–26 Sep 1998, Strasbourg, France). J Orthop Trauma. 1999;13(4):282–3.CrossRefGoogle Scholar
  16. 16.
    Kessler S, Hallfeldt K, Perren S, Schweiberer L. The effects of reaming and intramedullary nailing on fracture healing. Clin Orthop Relat Res. 1986;212:18–25.Google Scholar
  17. 17.
    Pfeifer R, Sellei R, Pape HC. The biology of intramedullary reaming. Injury. 2010;41(Suppl 2):S4–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Klein M, Rahn B, Frigg R, Kessler S, Perren SJ. Reaming versus non-reaming in medullary nailing: interference with cortical circulation of the canine tibia. Arch Orthop Trauma Surg. 1990;109(6):314–6.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Claes L, Heitemeyer U, Krischak G, Braun H, Hierholzer GJ. Fixation technique influences osteogenesis of comminuted fractures. Clin Orthop Relat Res. 1999;365:221–9.CrossRefGoogle Scholar
  20. 20.
    Perren SM, Buchanan JS. Basic concepts relevant to the design and development of the Point Contact Fixator (PC-Fix). Injury. 1995;26(Suppl 2):1–4.CrossRefGoogle Scholar
  21. 21.
    Tepic S, Perren SJ. The biomechanics of the PC-Fix internal fixator. Injury. 1995;26(Suppl 2):5–10.CrossRefGoogle Scholar
  22. 22.
    Farouk O, Krettek C, Miclau T, Schandelmaier P, Guy P, Tscherne HJ. Minimally invasive plate osteosynthesis: does percutaneous plating disrupt femoral blood supply less than the traditional technique? J Orthop Trauma. 1999;13(6):401–6.PubMedCrossRefGoogle Scholar
  23. 23.
    McKibbin B. The biology of fracture healing in long bones. J Bone Joint Surg Br. 1978;60-B(2):150–62.CrossRefGoogle Scholar
  24. 24.
    Allgöwer M, Perren SM, Rüedi T. Biophysikalische Aspekte der normalen und der heilenden Knochencorticalis. Langenbecks Arch für Chirurgie. 1970;328(1–2):109–14.CrossRefGoogle Scholar
  25. 25.
    Perren S. Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res. 1979;138:175–96.Google Scholar
  26. 26.
    Perren SM, Huggler A, Russenberger M, Straumann F, Müller ME, Allgöwer M. A method of measuring the change in compression applied to living cortical bone. Acta Orthop Scand Suppl. 1969;125:7–16.PubMedGoogle Scholar
  27. 27.
    Perren S, Russenberger M, Steinemann S, Müller M, Allgöwer M. A dynamic compression plate. Acta Orthop Scand Suppl. 1969;125:31–41.PubMedGoogle Scholar
  28. 28.
    Perren SM. Optimizing the degree of fixation stability based on the strain theory. Orthopade. 2010;39(2):132–8. [Article in French].PubMedCrossRefGoogle Scholar
  29. 29.
    Perren SM. Evolution of the internal fixation of long bone fractures: the scientific basis of biological internal fixation: choosing a new balance between stability and biology. Bone Joint J. 2002;84(8):1093–110.CrossRefGoogle Scholar
  30. 30.
    Browner BD, Jupiter JB, Krettek C, Anderson PA. Skeletal trauma e-book: basic science management and reconstructions. 5th ed. Philadelphia: Elsevier Saunders; 2015.Google Scholar
  31. 31.
    Rüedi TP, Buckley RE, Moran CG; Arbeitsgemeinschaft für Osteosynthesefragen. AO principles of fracture management, 2nd ed. Vol 2 Specific fractures. Stuttgart/New York: Thieme; 2007.Google Scholar
  32. 32.
    Fleming B, Paley D, Kristiansen T, Pope MJ. A biomechanical analysis of the Ilizarov external fixator. Clin Orthop Relat Res. 1989;241:95–105.Google Scholar
  33. 33.
    Hildebrand F, Giannoudis P, Kretteck C, Pape HC. Damage control: extremities. Injury. 2004;35(7):678–89.PubMedCrossRefGoogle Scholar
  34. 34.
    Pape H-C, Giannoudis P, Krettek C. The timing of fracture treatment in polytrauma patients: relevance of damage control orthopedic surgery. Am J Surg. 2002;183(6):622–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Pape H-C, Tornetta P, Tarkin I, Tzioupis C, Sabeson V, Olson SA. Timing of fracture fixation in multitrauma patients: the role of early total care and damage control surgery. J Am Acad Orthop Surg. 2009;17(9):541–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Hansen ST, Winquist RA. Closed intramedullary nailing of the femur. Küntscher technique with reaming. Clin Orthop Relat Res. 1979;138:56–61.Google Scholar
  37. 37.
    Bick EM. The intramedullary nailing of fractures by G. Küntscher. Translation of article in Archiv für Klinische Chirurgie, 200:443, 1940. Clin Orthop Relat Res. 1968;60:5–12.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Schandelmaier P, Krettek C, Tscherne HJ. Biomechanical study of nine different tibia locking nails. J Orthop Trauma. 1996;10(1):37–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Johnson KD, Tencer AF, Blumenthal S, August A, Johnston DJ. Biomechanical performance of locked intramedullary nail systems in comminuted femoral shaft fractures. Clin Orthop Relat Res. 1986;206:151–61.Google Scholar
  40. 40.
    Bong MR, Kummer FJ, Koval KJ, Egol KA. Intramedullary nailing of the lower extremity: biomechanics and biology. J Am Acad Orthop Res. 2007;15(2):97–106.CrossRefGoogle Scholar
  41. 41.
    Piątkowski K, Piekarczyk P, Kwiatkowski K, Przybycień M, Chwedczuk BJ. Comparison of different locking plate fixation methods in distal tibia fractures. Int Orthop. 2015;39(11):2245–51.PubMedCrossRefGoogle Scholar
  42. 42.
    Claes L, Augat P, Suger G, Wilke HJ. Influence of size and stability of the osteotomy gap on the success of fracture healing. J Orthop Res. 1997;15(4):577–84.PubMedCrossRefGoogle Scholar
  43. 43.
    Claes LJ. Dynamisierung der Osteosynthese: Zietpunkt und Methoden. Der Unfallchirurg. Ausgabe 1/2018. Dynamisierung der Ostosynthese. 2018;121(1):3–9.Google Scholar
  44. 44.
    Perren SM, Cordey J. The concept of interfragmentary strain. In: Uhthoff HK, Stahl E, editors. Current concepts of internal fixation of fractures. Berlin: Springer; 1980. p. 63–77.Google Scholar
  45. 45.
    Goodship A, Kenwright J. The influence of induced micromovement upon the healing of experimental tibial fractures. Bone Joint J. 1985;67(4):650–5.CrossRefGoogle Scholar
  46. 46.
    Schenk R, Müller J, Willenegger HJ. Experimental histological contribution to the development and treatment of pseudarthrosis. Hefte Unfallheilkd. 1968;94:15–24. [Article in German].PubMedGoogle Scholar
  47. 47.
    Perren SM, Huggler A, Russenberger M, Allgöwer M, Mathys R, Schenk R, et al. The reaction of cortical bone to compression. Acta Orthop Scand Suppl. 1969;125:19–29.PubMedGoogle Scholar
  48. 48.
    van Frank Haasnoot E, Münch TW, Matter P, Perren SM. Radiological sequences of healing in internal plates and splints of different contact surface to bone. (DCP, LC-DCP and PC-Fix). Injury. 1995;26(Suppl 2):28–36.CrossRefGoogle Scholar
  49. 49.
    Schenk R, Willenegger HJ. Zum histologischen Bild der sogenannten Primärheilung der Knochenkompakta nach experimentellen Osteotomien am Hund. Experientia. 1963;19(11):593–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Rahn BA, Gallinaro P, Baltensperger A, Perren SM. Primary bone healing: an experimental study in the rabbit. J Bone Joint Surg Am. 1971;53(4):783–6.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Trauma SurgeryUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations