Advertisement

Energy Harvesting Technologies and Market Opportunities

  • Farzad H. PanahiEmail author
  • Fereidoun H. Panahi
Chapter
  • 24 Downloads

Abstract

Energy harvesting (EH) is a process in which ambient energies are utilized to form effective energies using various advanced techniques. Growing demand for energy in major end-use industries and green powered technologies are expected to drive the overall EH market. Indeed, the significant growth of the market can be attributed to the increasing installation of wireless sensor networks (WSNs) and Internet of Things (IoT) which are expected to boost the EH market through increasing self-powered sensors. In general, this chapter investigates the EH framework based on energy sources and technologies, intelligent solutions, and market opportunities.

Keywords

Energy harvesting technologies Market opportunities Key players Intelligent mechanisms Sensor networks Green powered systems 

Nomenclature

AP

Access point

BS

Base station

CH

Cluster head

D2D

Device-to-device

EE

Energy efficiency

EH

Energy harvesting

HER

Energy harvesting rate

EHT

Energy harvesting technology

FIS

Fuzzy inference system

FQLA

Fuzzy Q-learning algorithm

HetNet

Heterogeneous network

ICT

Information and communication technology

IoT

Internet of Things

GHG

Greenhouse gas

M2M

Machine-to-machine

PS

Power station

QLA

Q-learning algorithm

QoS

Quality of service

RF

Radio frequency

RL

Reinforcement learning

RPS

Renewable power supplier

RES

Renewable energy source

SG

Smart grid

WPT

Wireless power transfer

WSN

Wireless sensor network

UDN

Ultradense network

UE

User equipment

UWB

Ultrawide band

References

  1. 1.
    H. Schaffers et al., Smart cities and the future internet: towards cooperation frameworks for open innovation, in The Future Internet, Lect. Notes Comput. Sci., vol. 6656 (2011), pp. 431–446Google Scholar
  2. 2.
    S. Chen et al., A vision of IoT: applications, challenges, and opportunities with China perspective. IEEE Internet Things J. 1(4), 349–359 (2014)CrossRefGoogle Scholar
  3. 3.
    O. Vermesan, P. Friess, Internet of Things strategic research and innovation agenda, in Internet of Things—Converging Technologies for Smart Environments and Integrated Ecosystems, (River Publishers, Denmark, 2013)Google Scholar
  4. 4.
    L. Atzori et al., The Internet of Things: a survey. Comput. Netw. 54(15), 2787–2805 (2010)zbMATHCrossRefGoogle Scholar
  5. 5.
    A. Zanella et al., Internet of Things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Sudevalayam, P. Kulkarni, Energy harvesting sensor nodes: survey and implications. IEEE Commun. Surv. Tutorials 13(3), 443–461 (2011)CrossRefGoogle Scholar
  7. 7.
    J.W. Matiko et al., Review of the application of energy harvesting in buildings. Meas. Sci. Technol. 25(1), 1–25 (2013)Google Scholar
  8. 8.
    J.A. Paradiso, T. Starner, Energy scavenging for mobile and wireless electronics. IEEE Perv. Comput. 4, 18–27 (2005)CrossRefGoogle Scholar
  9. 9.
    V. Raghunathan, C. Schurgers, P. Sung, M.B. Srivastava, Energy-aware wireless microsensor networks. IEEE Signal Process. Mag. 19, 40–50 (2002)CrossRefGoogle Scholar
  10. 10.
    S. Roundy, Energy Scavenging for Wireless Sensor Nodes with a Focus on Vibration to Electricity Conversion, Ph.D. Dissertation, Dept. of EECS, UC Berkeley, May 2003Google Scholar
  11. 11.
    J. Rabaey, M.J. Ammer, J.L. Silva, D. Patel, S. Roundy, Picaradio supports ad hoc ultra-low power wireless networking. IEEE Comput. 33, 42–48 (2000)CrossRefGoogle Scholar
  12. 12.
    J.H. Kansal, S. Zahedi, M.B. Srivastava, Power management in energy harvesting sensor networks. ACM Trans. Embed. Comput. Syst. 6(4), 32 (2007)CrossRefGoogle Scholar
  13. 13.
    Microstrain Press Release, Microstrain wins navy contract for developing energy-harvesting wireless sensors (July 2006), http://www.microstrain.com/news/article-65.aspx
  14. 14.
    J. Ieropoulos, C.M. Greenman, J. Hart, Comparative study of three types of microbial fuel cells. Enzym. Microb. Technol. 37, 238–245 (2005)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    A.S. Adila, A. Husam, G. Husi, Towards the self-powered Internet of Things (IoT) by energy harvesting: trends and technologies for green IoT, in 2nd IEEE International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS) (2018) pp. 1–5Google Scholar
  17. 17.
    P. Kamalinejad et al., Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRefGoogle Scholar
  18. 18.
    J. Han, J. Hu, Y. Yang, Z. Wang, S.X. Wang, J. He, A nonintrusive power supply design for self-powered sensor networks in the smart grid by scavenging energy from ac power line. IEEE Trans. Ind. Electron. 62(7), 4398–4407 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Fateh, M. Govindarasu, V. Ajjarapu, Wireless network design for transmission line monitoring in smart grid. IEEE Trans. Smart Grid 4(2), 1076–1086 (2013)CrossRefGoogle Scholar
  20. 20.
    J.L. Wardlaw, I. Karaman, A.I. Karsilayan, Low-power circuits and energy harvesting for structural health monitoring of bridges. IEEE Sensors J. 13(2), 709–722 (2013). L. Zhou, A.C. AbrahamCrossRefGoogle Scholar
  21. 21.
    S.Y. Tang, S. Chakrabartty, A 5nw quasi-linear CMOS hot-electron injector for self-powered monitoring of biomechanical strain variations. IEEE Trans. Biomed. Circ. Syst. 10(6), 1143–1151 (2016)CrossRefGoogle Scholar
  22. 22.
    C. Zhu, V.C.M. Leung, L. Shu, E.C.-H. Ngai, Green Internet of Things for smart world. IEEE Access 3, 2151–2162 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Wang, X. Qin, B. Liu, An energy-efficient clustering routing algorithm for WSN-assisted IoT, in IEEE Wireless Communications and Networking Conference (WCNC) (2018), pp. 1–6Google Scholar
  25. 25.
    H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Survey of platforms for massive IOT, in 2018 IEEE International Conference on Future IoT Technologies (Future IoT), IEEE, pp. 1–8Google Scholar
  26. 26.
    T. Ruan, Z.J. Chew, M. Zhu, Energy-aware approaches for energy harvesting powered wireless sensor nodes. IEEE Sensors J. 17(7), 2165–2173 (2017)CrossRefGoogle Scholar
  27. 27.
    F.H. Panahi, A. Falahati, Spectral efficient impulse radio-ultra-wideband transmission model in presence of pulse attenuation and timing jitter. IET Commun. 6(11), 1544–1554 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    F.H. Panahi, F.H. Panahi, M. Ghaderzadeh, A. Mohammadisarab, M2M communications as a promising technique to support green powered base stations, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1654–1658Google Scholar
  29. 29.
    F.H. Panahi, F.H. Panahi, S. Heshmati, T. Ohtsuki, Optimal sleep & wakeup mechanism for green Internet of Things, in 2019 27th Iranian Conference on Electrical Engineering (ICEE), Yazd, Iran (2019), pp. 1659–1663Google Scholar
  30. 30.
    F.H. Panahi, P. Hajimirzaee, S. Erfanpoor, F.H. Panahi, T. Ohtsuki, Smart image-processing based energy harvesting for green Internet of Things, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–5Google Scholar
  31. 31.
    F.H. Panahi, S. Moshirvaziri, A. Momene, F.H. Panahi, T. Ohtsuki, D2D-aided optimal utilization of renewable energies for green powered base stations, in 2018 Smart Grid Conference (SGC), Sanandaj, Iran (2018), pp. 1–6Google Scholar
  32. 32.
    F.H. Panahi, P.F.i.Z.H. Panahi, Spectral-efficient green wireless communications via cognitive UWB signal model. Automatika 57(3), 793–809 (2016)CrossRefGoogle Scholar
  33. 33.
    F.H. Panahi, A. Falahati, Joint IR-UWB power spectral lines and interference suppression based on coded auxiliary independent signaling in presence of pulse attenuation and timing jitter. Wirel. Pers. Commun. 69(4), 1241–1260 (2013)CrossRefGoogle Scholar
  34. 34.
    A. Falahati, F.H. Panahi, Spectrally efficient ultra wideband transmission over wireless sensor networks, in IET Conference on Wireless Sensor Systems (WSS 2012) (2012)Google Scholar
  35. 35.
    W. Ejaz, M. Naeem, A. Shahid, A. Anpalagan, M. Jo, Efficient energy management for the Internet of Things in smart cities. IEEE Commun. Mag. 55(1), 84–91 (2017)CrossRefGoogle Scholar
  36. 36.
    G. Yang, C.K. Ho, Y.L. Guan, Dynamic resource allocation for multiple-antenna wireless power transfer. IEEE Trans. Signal Process. 62(14), 3565–3577 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    X. Lu, P. Wang, D. Niyato, D. In Kim, Z. Han, Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun. Surv. Tutorials 17(2), 757–789 (2015)CrossRefGoogle Scholar
  38. 38.
    P. Kamalinejad, C. Mahapatra, Z. Sheng, S. Mirabbasi, V.C.M. Leung, Y.L. Guan, Wireless energy harvesting for the Internet of Things. IEEE Commun. Mag. 53(6), 102–108 (2015)CrossRefGoogle Scholar
  39. 39.
    D. Vincze, Fuzzy rule interpolation and reinforcement learning, in IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI) (2017), pp. 000173–000178Google Scholar
  40. 40.
    F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabric, Green heterogeneous networks via an intelligent sleep/wake-up mechanism and D2D communications. IEEE Trans. Green Commun. Netw. 2(4), 915–931 (2018)CrossRefGoogle Scholar
  41. 41.
    T. Podobnikar, Detecting mountain peaks and delineating their shapes using digital elevation models, remote sensing and geographic information systems using autometric methodological procedures. Remote Sens. 4(3), 784–809 (2012)CrossRefGoogle Scholar
  42. 42.
    G. Han, J. Zhang, X. Mu, Joint optimization of energy harvesting and detection threshold for energy harvesting cognitive radio networks. IEEE Access 4, 7212–7222 (2016)CrossRefGoogle Scholar
  43. 43.
    C. Qiu, Y. Hu, Y. Chen, B. Zeng, Lyapunov optimization for energy harvesting wireless sensor communications. IEEE Internet Things J. 5(3), 1947–1956 (2018)CrossRefGoogle Scholar
  44. 44.
    Z. Wang, V. Aggarwal, X. Wang, Joint energy-bandwidth allocation in multiple broadcast channels with energy harvesting. IEEE Trans. Commun. 63(10), 3842–3855 (2015)CrossRefGoogle Scholar
  45. 45.
    Z. Ullah, I. Ahmed, T. Ali, N. Ahmad, F. Niaz, Y. Cao, Robust and efficient energy harvested-aware routing protocol with clustering approach in body area networks. IEEE Access 7, 33906–33921 (2019)CrossRefGoogle Scholar
  46. 46.
    J. Liu, C.R. Lin, J. Tsai, Delay and energy tradeoff in energy harvesting multi-hop wireless networks with inter-session network coding and successive interference cancellation. IEEE Access 5, 544–564 (2017)CrossRefGoogle Scholar
  47. 47.
    K. Chin, L. Wang, S. Soh, Joint routing and links scheduling in two-tier multi-hop RF-energy harvesting networks. IEEE Commun. Lett. 20(9), 1864–1867 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Zhang, Y. Guo, Z. Zhong, W. Wu, Cooperative integration of RF energy harvesting and dedicated WPT for wireless sensor networks. IEEE Microwave Wireless Compon. Lett. 29(4), 291–293 (2019)CrossRefGoogle Scholar
  49. 49.
    S.H. Kang, J.H. Choi, F.J. Harackiewicz, C.W. Jung, Magnetic resonant three-coil WPT system between off/in-body for remote energy harvest. IEEE Microwave Wireless Compon. Lett. 26(9), 741–743 (2016)CrossRefGoogle Scholar
  50. 50.
    S. Wang, M. Xia, K. Huang, Y. Wu, Wirelessly powered two-way communication with nonlinear energy harvesting model: rate regions under fixed and Mobile relay. IEEE Trans. Wireless Commun. 16(12), 8190–8204 (2017)CrossRefGoogle Scholar
  51. 51.
    Y. Tang, A. Khaligh, A multi-input bridgeless resonant AC–DC converter for electromagnetic energy harvesting. IEEE Trans. Power Electron. 31(3), 2254–2263 (2016)CrossRefGoogle Scholar
  52. 52.
    F.A. Samad, M.F. Karim, V. Paulose, L.C. Ong, A curved electromagnetic energy harvesting system for wearable electronics. IEEE Sensors J. 16(7), 1969–1974 (2016)CrossRefGoogle Scholar
  53. 53.
    Y. Chen, F. Lai, J. You, Analysis of antenna radiation characteristics using a hybrid ray tracing algorithm for indoor WiFi energy-harvesting rectennas. IEEE Access 7, 38833–38846 (2019)CrossRefGoogle Scholar
  54. 54.
    G. Pan, H. Lei, Y. Yuan, Z. Ding, Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Trans. Commun. 65(5), 2291–2302 (2017)CrossRefGoogle Scholar
  55. 55.
    T. Liu, X. Wang, L. Zheng, A cooperative SWIPT scheme for wirelessly powered sensor networks. IEEE Trans. Commun. 65(6), 2740–2752 (2017)CrossRefGoogle Scholar
  56. 56.
    S. Gong, S. Ma, C. Xing, G. Yang, Optimal beam-forming and time allocation for partially wireless powered sensor networks with downlink SWIPT. IEEE Trans. Signal Process. 67(12), 3197–3212 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Q. Zhao, Y. Shen, M. Li, Control and bidding strategy for virtual power plants with renewable generation and inelastic demand in electricity markets. IEEE Trans. Sustainable Energy 7(2), 562–575 (2016)CrossRefGoogle Scholar
  58. 58.
    J. Knudsen, J. Hansen, A.M. Annaswamy, A dynamic market mechanism for the integration of renewables and demand response. IEEE Trans. Control Syst. Technol. 24(3), 940–955 (2016)CrossRefGoogle Scholar
  59. 59.
    D. Li, W. Saad, I. Guvenc, A. Mehbodniya, F. Adachi, Decentralized energy allocation for wireless networks with renewable energy powered base stations. IEEE Trans. Commun. 63(6), 2126–2142 (2015)CrossRefGoogle Scholar
  60. 60.
    J. Shen, A. Khaligh, A supervisory energy management control strategy in a battery/ultracapacitor hybrid energy storage system. IEEE Trans. Transport. Electr. 1(3), 223–231 (2015)CrossRefGoogle Scholar
  61. 61.
    R.H. Byrne, T.A. Nguyen, D.A. Copp, B.R. Chalamala, I. Gyuk, Energy management and optimization methods for grid energy storage systems. IEEE Access 6, 13231–13260 (2018)CrossRefGoogle Scholar
  62. 62.
    I.N. Moghaddam, B.H. Chowdhury, S. Mohajeryami, Predictive operation and optimal sizing of battery energy storage with high wind energy penetration. IEEE Trans. Ind. Electron. 65(8), 6686–6695 (2018)CrossRefGoogle Scholar
  63. 63.
    A.E. Abdulhadi, T.A. Denidni, Self-powered multi-port UHF RFID tag-based-sensor. IEEE J. Radio Freq. Identif. 1(2), 115–123 (2017)CrossRefGoogle Scholar
  64. 64.
    S. Seneviratne et al., A survey of wearable devices and challenges. IEEE Commun. Surv. Tutorials 19(4), 2573–2620 (2017)CrossRefGoogle Scholar
  65. 65.
    C. Dong, S. Li, R. Han, Q. He, X. Li, D. Xu, Self-powered wireless sensor network using event-triggered energy harvesters for monitoring and identifying intrusion activities. IET Power Electron. 12(8), 2079–2085 (2019)CrossRefGoogle Scholar
  66. 66.
    J. Ikäheimo, E. Pursiheimo, J. Kiviluoma, H. Holttinen, Role of power to liquids and biomass to liquids in a nearly renewable energy system. IET Renew. Power Gener. 13(7), 1179–1189 (2019)CrossRefGoogle Scholar
  67. 67.
    X. Chen, Y. Wang, Q. Wu, A bio-fuel power generation system with hybrid energy storage under a dynamic programming operation strategy. IEEE Access 7, 64966–64977 (2019)CrossRefGoogle Scholar
  68. 68.
    J. Katic, S. Rodriguez, A. Rusu, A high-efficiency energy harvesting interface for implanted biofuel cell and thermal harvesters. IEEE Trans. Power Electron. 33(5), 4125–4134 (2018)CrossRefGoogle Scholar
  69. 69.
    H. Liu, X. Zhao, H. Liang, Z. Li, POMDP-based energy cooperative transmission policy for multiple access model powered by energy harvesting. IEEE Trans. Veh. Technol. 68(6), 5747–5757 (2019)CrossRefGoogle Scholar
  70. 70.
    S. Kosunalp, A new energy prediction algorithm for energy-harvesting wireless sensor networks with Q-learning. IEEE Access 4, 5755–5763 (2016)CrossRefGoogle Scholar
  71. 71.
    X. He, H. Jiang, Y. Song, C. He, H. Xiao, Routing selection with reinforcement learning for energy harvesting multi-hop CRN. IEEE Access 7, 54435–54448 (2019)CrossRefGoogle Scholar
  72. 72.
    S. Xiao, X. Zhou, D. Feng, Y. Yuan-Wu, G.Y. Li, W. Guo, Energy-efficient mobile association in heterogeneous networks with device-to-device communications. IEEE Trans. Wirel. Commun. 8, 5260–5271 (2016)CrossRefGoogle Scholar
  73. 73.
    R. Atat, L. Liu, N. Mastronarde, Y. Yi, Energy harvesting-based D2D-assisted machine-type communications. IEEE Trans. Commun. 65(3), 1289–1302 (2017)CrossRefGoogle Scholar
  74. 74.
    F.H. Panahi, F.H. Panahi, G. Hattab, T. Ohtsuki, D. Cabrici, Green heterogeneous networks via an intelligent power control strategy and D2D communications, in 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC (2017), pp. 1–8Google Scholar
  75. 75.
    Y. Ma, W. Liang, W. Xu, Charging utility maximization in wireless rechargeable sensor networks by charging multiple sensors simultaneously. IEEE/ACM Trans. Netw. 26(4), 1591–1604 (2018)CrossRefGoogle Scholar
  76. 76.
    R. Deng, S. He, P. Cheng, Y. Sun, Towards balanced energy charging and transmission collision in wireless rechargeable sensor networks. J. Commun. Netw. 19(4), 341–350 (2017)CrossRefGoogle Scholar
  77. 77.
    Y. Shu et al., Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 15(7), 1699–1713 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of KurdistanSanandajIran

Personalised recommendations