Advertisement

Imaging in Movement Disorder Phenomenology

  • Steven J. FruchtEmail author
  • Pichet Termsarasab
Chapter
  • 37 Downloads

Abstract

Brain imaging offers important clues to etiology in a variety of movement disorders. In this chapter, we review cardinal imaging findings in atypical parkinsonism, myoclonus, chorea, tremor, and dystonia.

Keywords

DAT scan Eye-of-the-tiger Fahr’s syndrome Sign of the giant panda 

References

  1. 1.
    Cardaioli G, Ripandelli F, Paolini Paoletti F, Nigro P, Simoni S, Brahimi E et al. Substantia nigra hyperechogenicity in essential tremor and Parkinson’s disease: a longitudinal study. Eur J Neurol. 2019. doi: https://doi.org/10.1111/ene.13988.CrossRefGoogle Scholar
  2. 2.
    Guan X, Xu X, Zhang M. Region-specific iron measured by MRI as a biomarker for parkinson’s disease. Neurosci Bull. 2017;33(5):561–7.  https://doi.org/10.1007/s12264-017-0138-x.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Deguchi K, Ikeda K, Kume K, Takata T, Kokudo Y, Kamada M, et al. Significance of the hot-cross bun sign on T2∗-weighted MRI for the diagnosis of multiple system atrophy. J Neurol. 2015;262(6):1433–9.  https://doi.org/10.1007/s00415-015-7728-1.CrossRefPubMedGoogle Scholar
  4. 4.
    Savoiardo M, Strada L, Girotti F, Zimmerman RA, Grisoli M, Testa D, et al. Olivopontocerebellar atrophy: MR diagnosis and relationship to multisystem atrophy. Radiology. 1990;174(3 Pt 1):693–6.  https://doi.org/10.1148/radiology.174.3.2305051.CrossRefPubMedGoogle Scholar
  5. 5.
    Konagaya M, Konagaya Y, Iida M. Clinical and magnetic resonance imaging study of extrapyramidal symptoms in multiple system atrophy. J Neurol Neurosurg Psychiatry. 1994;57(12):1528–31.  https://doi.org/10.1136/jnnp.57.12.1528.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shrivastava A. The hot cross bun sign. Radiology. 2007;245(2):606–7.  https://doi.org/10.1148/radiol.2452041856.CrossRefPubMedGoogle Scholar
  7. 7.
    Lee YC, Liu CS, Wu HM, Wang PS, Chang MH, Soong BW. The ‘hot cross bun’ sign in the patients with spinocerebellar ataxia. Eur J Neurol. 2009;16(4):513–6.  https://doi.org/10.1111/j.1468-1331.2008.02524.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Tha KK, Terae S, Tsukahara A, Soma H, Morita R, Yabe I, et al. Hyperintense putaminal rim at 1.5T: prevalence in normal subjects and distinguishing features from multiple system atrophy. BMC Neurol. 2012;12:39.  https://doi.org/10.1186/1471-2377-12-39.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Feng JY, Huang B, Yang WQ, Zhang YH, Wang LM, Wang LJ, et al. The putaminal abnormalities on 3.0T magnetic resonance imaging: can they separate parkinsonism-predominant multiple system atrophy from Parkinson’s disease? Acta Radiol. 2015;56(3):322–8.  https://doi.org/10.1177/0284185114524090.CrossRefPubMedGoogle Scholar
  10. 10.
    Cicilet S, Furruqh F, Biswas A, Philip B. Hot cross bun and bright middle cerebellar peduncle signs in cerebellar type multiple system atrophy. BMJ Case Rep. 2017;2017:bcr-2017-220576.  https://doi.org/10.1136/bcr-2017-220576.CrossRefPubMedGoogle Scholar
  11. 11.
    Chandran V, Stoessl AJ. Imaging in multiple system atrophy. Neurol Clin Neurosci. 2014;2(6):178–87.  https://doi.org/10.1111/ncn3.125.CrossRefGoogle Scholar
  12. 12.
    Massey LA, Jager HR, Paviour DC, O’Sullivan SS, Ling H, Williams DR, et al. The midbrain to pons ratio: a simple and specific MRI sign of progressive supranuclear palsy. Neurology. 2013;80(20):1856–61.  https://doi.org/10.1212/WNL.0b013e318292a2d2.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage. 2005;26(3):912–21.  https://doi.org/10.1016/j.neuroimage.2005.03.012.CrossRefPubMedGoogle Scholar
  14. 14.
    Poston KL, Eidelberg D. FDG PET in the evaluation of parkinson’s disease. PET Clin. 2010;5(1):55–64.  https://doi.org/10.1016/j.cpet.2009.12.004.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kasuga K, Ikeuchi T, Arakawa K, Yajima R, Tokutake T, Nishizawa M. A patient with fragile x-associated tremor/ataxia syndrome presenting with executive cognitive deficits and cerebral white matter lesions. Case Rep Neurol. 2011;3(2):118–23.  https://doi.org/10.1159/000328838.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Arii J, Tanabe Y. Leigh syndrome: serial MR imaging and clinical follow-up. AJNR Am J Neuroradiol. 2000;21(8):1502–9.PubMedGoogle Scholar
  17. 17.
    Harting I, Seitz A, Geb S, Zwickler T, Porto L, Lindner M, et al. Looking beyond the basal ganglia: the spectrum of MRI changes in methylmalonic acidaemia. J Inherit Metab Dis. 2008;31(3):368–78.  https://doi.org/10.1007/s10545-008-0801-5.CrossRefPubMedGoogle Scholar
  18. 18.
    Alfadhel M, Almuntashri M, Jadah RH, Bashiri FA, Al Rifai MT, Al Shalaan H, et al. Biotin-responsive basal ganglia disease should be renamed biotin-thiamine-responsive basal ganglia disease: a retrospective review of the clinical, radiological and molecular findings of 18 new cases. Orphanet J Rare Dis. 2013;8:83.  https://doi.org/10.1186/1750-1172-8-83.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Goldenberg PC, Steiner RD, Merkens LS, Dunaway T, Egan RA, Zimmerman EA, et al. Remarkable improvement in adult Leigh syndrome with partial cytochrome c oxidase deficiency. Neurology. 2003;60(5):865–8.  https://doi.org/10.1212/01.wnl.0000049460.72439.7.CrossRefPubMedGoogle Scholar
  20. 20.
    Bindu PS, Kovoor JM, Christopher R. Teaching NeuroImages: MRI in methylmalonic acidemia. Neurology. 2010;74(4):e14.  https://doi.org/10.1212/WNL.0b013e3181cc0b7b.CrossRefPubMedGoogle Scholar
  21. 21.
    Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J Rare Dis. 2014;9:179.  https://doi.org/10.1186/s13023-014-0179-4.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Pudhiavan A, Agrawal A, Chaudhari S, Shukla A. Cerebrotendinous xanthomatosis--the spectrum of imaging findings. J Radiol Case Rep. 2013;7(4):1–9.  https://doi.org/10.3941/jrcr.v7i4.1338.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Alcalay R, Wu S, Patel S, Frucht S. Oromandibular dystonia as a complication of cerebrotendinous xanthomatosis. Mov Disord. 2009;24(9):1397–9.  https://doi.org/10.1002/mds.22585.CrossRefPubMedGoogle Scholar
  24. 24.
    Hitoshi S, Iwata M, Yoshikawa K. Mid-brain pathology of Wilson’s disease: MRI analysis of three cases. J Neurol Neurosurg Psychiatry. 1991;54(7):624–6.  https://doi.org/10.1136/jnnp.54.7.624.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jacobs DA, Markowitz CE, Liebeskind DS, Galetta SL. The “double panda sign” in Wilson’s disease. Neurology. 2003;61(7):969.  https://doi.org/10.1212/01.wnl.0000085871.98174.4e.CrossRefPubMedGoogle Scholar
  26. 26.
    Shivakumar R, Thomas SV. Teaching NeuroImages: face of the giant panda and her cub: MRI correlates of Wilson disease. Neurology. 2009;72(11):e50.  https://doi.org/10.1212/01.wnl.0000344409.73717.a1.CrossRefPubMedGoogle Scholar
  27. 27.
    Sethi KD, Adams RJ, Loring DW, el Gammal T. Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol. 1988;24(5):692–4.  https://doi.org/10.1002/ana.410240519.CrossRefPubMedGoogle Scholar
  28. 28.
    Kurian MA, Morgan NV, MacPherson L, Foster K, Peake D, Gupta R, et al. Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology. 2008;70(18):1623–9.  https://doi.org/10.1212/01.wnl.0000310986.48286.8e.CrossRefPubMedGoogle Scholar
  29. 29.
    Kruer MC, Paisan-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol. 2010;68(5):611–8.  https://doi.org/10.1002/ana.22122.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Hogarth P, Gregory A, Kruer MC, Sanford L, Wagoner W, Natowicz MR, et al. New NBIA subtype: genetic, clinical, pathologic, and radiographic features of MPAN. Neurology. 2013;80(3):268–75.  https://doi.org/10.1212/WNL.0b013e31827e07be.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, et al. Beta-Propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain. 2013;136(Pt 6):1708–17.  https://doi.org/10.1093/brain/awt095.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Batla A, Adams ME, Erro R, Ganos C, Balint B, Mencacci NE, et al. Cortical pencil lining in neuroferritinopathy: a diagnostic clue. Neurology. 2015;84(17):1816–8.  https://doi.org/10.1212/WNL.0000000000001511.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ohta E, Takiyama Y. MRI findings in neuroferritinopathy. Neurol Res Int. 2012;2012:197438.  https://doi.org/10.1155/2012/197438.CrossRefPubMedGoogle Scholar
  34. 34.
    Fujita K, Osaki Y, Harada M, Kono S, Miyajima H, Izumi Y, et al. Brain and liver iron accumulation in aceruloplasminemia. Neurology. 2013;81(24):2145–6.  https://doi.org/10.1212/01.wnl.0000437304.30227.bd.CrossRefPubMedGoogle Scholar
  35. 35.
    McNeill A, Birchall D, Hayflick SJ, Gregory A, Schenk JF, Zimmerman EA, et al. T2∗ and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology. 2008;70(18):1614–9.  https://doi.org/10.1212/01.wnl.0000310985.40011.d6.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Baba Y, Broderick DF, Uitti RJ, Hutton ML, Wszolek ZK. Heredofamilial brain calcinosis syndrome. Mayo Clin Proc. 2005;80(5):641–51.  https://doi.org/10.4065/80.5.641.CrossRefPubMedGoogle Scholar
  37. 37.
    Mejdoubi M, Zegermann T. Neurological picture. Extensive brain calcification in idiopathic hypoparathyroidism. J Neurol Neurosurg Psychiatry. 2006;77(12):1328.  https://doi.org/10.1136/jnnp.2006.098590.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    de la Plaza Llamas R, Ramia Angel JM, Arteaga Peralta V, Hernandez Cristobal J, Lopez Marcano AJ. Brain calcifications and primary hyperparathyroidism. Cir Esp. 2016;94(1):e5–7.  https://doi.org/10.1016/j.ciresp.2015.08.003.CrossRefPubMedGoogle Scholar
  39. 39.
    Raymond AA, Zariah AA, Samad SA, Chin CN, Kong NC. Brain calcification in patients with cerebral lupus. Lupus. 1996;5(2):123–8.  https://doi.org/10.1177/096120339600500207.CrossRefPubMedGoogle Scholar
  40. 40.
    Sue CM, Crimmins DS, Soo YS, Pamphlett R, Presgrave CM, Kotsimbos N, et al. Neuroradiological features of six kindreds with MELAS tRNA(Leu) A2343G point mutation: implications for pathogenesis. J Neurol Neurosurg Psychiatry. 1998;65(2):233–40.  https://doi.org/10.1136/jnnp.65.2.233.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Chung SH, Chen SC, Chen WJ, Lee CC. Symmetric basal ganglia calcification in a 9-year-old child with MELAS. Neurology. 2005;65(9):E19.  https://doi.org/10.1212/01.wnl.0000184112.34211.d1.CrossRefPubMedGoogle Scholar
  42. 42.
    Tadic V, Westenberger A, Domingo A, Alvarez-Fischer D, Klein C, Kasten M. Primary familial brain calcification with known gene mutations: a systematic review and challenges of phenotypic characterization. JAMA Neurol. 2015;72(4):460–7.  https://doi.org/10.1001/jamaneurol.2014.3889.CrossRefPubMedGoogle Scholar
  43. 43.
    Nicolas G, Pottier C, Charbonnier C, Guyant-Marechal L, Le Ber I, Pariente J, et al. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification. Brain. 2013;136(Pt 11):3395–407.  https://doi.org/10.1093/brain/awt255.CrossRefPubMedGoogle Scholar
  44. 44.
    Avelino MA, Fusao EF, Pedroso JL, Arita JH, Ribeiro RT, Pinho RS, et al. Inherited manganism: the “cock-walk” gait and typical neuroimaging features. J Neurol Sci. 2014;341(1–2):150–2.  https://doi.org/10.1016/j.jns.2014.03.057.CrossRefPubMedGoogle Scholar
  45. 45.
    Tuschl K, Clayton PT, Gospe SM Jr, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66.  https://doi.org/10.1016/j.ajhg.2012.01.018.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bhatia KP, Brown P, Gregory R, Lennox GG, Manji H, Thompson PD, et al. Progressive myoclonic ataxia associated with coeliac disease. The myoclonus is of cortical origin, but the pathology is in the cerebellum. Brain. 1995;118(Pt 5):1087–93.  https://doi.org/10.1093/brain/118.5.1087.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Termsarasab P, Thammongkolchai T, Frucht SJ. Spinal-generated movement disorders: a clinical review. J Clin Mov Disord. 2015;2:18.  https://doi.org/10.1186/s40734-015-0028-1.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ryan C, Ahlskog JE, Savica R. Hyperglycemic chorea/ballism ascertained over 15 years at a referral medical center. Parkinsonism Relat Disord. 2018;48:97–100.  https://doi.org/10.1016/j.parkreldis.2017.12.032.CrossRefGoogle Scholar
  49. 49.
    Maramattom BV. Paraneoplastic CRMP-5 basal ganglionitis and limbic encephalitis in an elderly Indian lady. Neurol India. 2013;61(5):534–5.  https://doi.org/10.4103/0028-3886.121941.CrossRefPubMedGoogle Scholar
  50. 50.
    Postuma RB, Lang AE. Hemiballism: revisiting a classic disorder. Lancet Neurol. 2003;2(11):661–8.CrossRefGoogle Scholar
  51. 51.
    Termsarasab P. Chorea. Continuum (Minneap Minn). 2019;25(4):1001–35.  https://doi.org/10.1212/CON.0000000000000763.CrossRefGoogle Scholar
  52. 52.
    Mencacci NE, Kamsteeg EJ, Nakashima K, R’Bibo L, Lynch DS, Balint B, et al. De Novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet. 2016;98(4):763–71.  https://doi.org/10.1016/j.ajhg.2016.02.015.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ehrlich DJ, Walker RH. Functional neuroimaging and chorea: a systematic review. J Clin Mov Disord. 2017;4:8.  https://doi.org/10.1186/s40734-017-0056-0.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Niu N, Cui R. Glucose hypermetabolism in contralateral basal ganglia demonstrated by serial FDG PET/CT scans in a patient with SLE chorea. Clin Nucl Med. 2017;42(1):64–5.  https://doi.org/10.1097/RLU.0000000000001450.CrossRefPubMedGoogle Scholar
  55. 55.
    Ho L. Hypermetabolism in bilateral basal ganglia in Sydenham chorea on F-18 FDG PET-CT. Clin Nucl Med. 2009;34(2):114–6.  https://doi.org/10.1097/RLU.0b013e318192c435.CrossRefPubMedGoogle Scholar
  56. 56.
    Dhar A, Manoila I, Dugay MH, Sellal F. Mystery case: metronidazole-induced encephalopathy. Neurology. 2016;87(9):e89–90.  https://doi.org/10.1212/WNL.0000000000003030.CrossRefPubMedGoogle Scholar
  57. 57.
    Mizusawa H, Clark HB, Koeppen AH. Spinocerebellar ataxias. In: Dickson DW, Weller RO, editors. Neurodegeneration: the molecular pathology of dementia and movement disorders. 2nd ed. Chichester: Wiley-Blackwell; 2011. p. 273–87.CrossRefGoogle Scholar
  58. 58.
    Pascual B, de Bot ST, Daniels MR, Franca MC Jr, Toro C, Riverol M, et al. “Ears of the lynx” MRI sign is associated with SPG11 and SPG15 hereditary spastic paraplegia. AJNR Am J Neuroradiol. 2019;40(1):199–203.  https://doi.org/10.3174/ajnr.A5935.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Denora PS, Santorelli FM, Bertini E. Hereditary spastic paraplegias: one disease for many genes, and still counting. Handb Clin Neurol. 2013;113:1899–912.  https://doi.org/10.1016/B978-0-444-59565-2.00060-5.CrossRefPubMedGoogle Scholar
  60. 60.
    Riverol M, Samaranch L, Pascual B, Pastor P, Irigoyen J, Pastor MA, et al. Forceps minor region signal abnormality “ears of the lynx”: an early MRI finding in spastic paraparesis with thin corpus callosum and mutations in the spatacsin gene (SPG11) on chromosome 15. J Neuroimaging. 2009;19(1):52–60.  https://doi.org/10.1111/j.1552-6569.2008.00327.x.CrossRefPubMedGoogle Scholar
  61. 61.
    Gerwig M, Kruger S, Kreuz FR, Kreis S, Gizewski ER, Timmann D. Characteristic MRI and funduscopic findings help diagnose ARSACS outside Quebec. Neurology. 2010;75(23):2133.  https://doi.org/10.1212/WNL.0b013e318200d7f8.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of Movement DisordersNew York University Grossman School of Medicine, The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone HealthNew YorkUSA
  2. 2.Division of Neurology, Faculty of MedicineRamathibodi Hospital, Mahidol UniversityBangkokThailand

Personalised recommendations