Advertisement

Mass Drug Treatment of Tropical Diseases: Is It Really Progress?

  • I. W. Fong
Chapter
  • 49 Downloads
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

There are 13 major chronic disabling diseases that are most common among the world’s poorest people, considered neglected tropical diseases that have been targeted by the World Health Organization for elimination or control. Five of the most prevalent of these (lymphatic filariasis, helminthiasis, onchocerciasis, schistosomiasis, and trachoma) have been treated by preventive chemotherapy given as mass drug treatment once or twice a year to endemic communities in tropical countries (mainly Africa and Asia) with some evidence of benefit. However, in the present era of widespread increasing global antimicrobial resistance directly related to their overuse, this policy may result in short-term gains but long-term pain from fuelling further drug resistance. This chapter reviews the current evidence of mass drug treatment of tropical diseases and potential disadvantages and concerns.

Keywords

Neglected tropical diseases Malaria Trachoma Lymphatic filariasis Onchocerciasis Schistosomiasis Helminths Mass drug administration 

References

  1. 1.
    Hotez PJ, Fenwick A, Savioli L, Molyneux DH (2009) Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373:1570–1575PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    World Health Organization (2012) Accelerating work to overcome the global impact of neglected tropical diseases—a roadmap for implementation. World Health Organization, GenevaGoogle Scholar
  3. 3.
    Hortez PJ, Molyneux DH, Fenwick A, Ottesen E, Erlich Sachs S, Scahs JD (2006) Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, malaria. PLoS Med 3:e102CrossRefGoogle Scholar
  4. 4.
    London Declaration on Neglected Tropical Diseases (2012). http://unitingtocombatntds.org/london-declaration-neglected-tropical-diseases/
  5. 5.
    Henderson DA (1998) Eradication: lessons from the past. Bull World Health Organ 76:17–21PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hollingsworth TD (2018) Counting down the 2020 goals for 9 neglected tropical diseases: what have we learned from quantitative analysis and transmission modeling? Clin Infect Dis 66(Suppl 4):S237–S244PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Steinmann P, Reed SG, Mirza F, Hollingsworth TD, Richardus JH (2017) Innovative tools and approaches to end the transmission of Mycobacterium leprae. Lancet Infect Dis 17:e298–e305PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Buischer P, Cecchi G, Jamonneau V, Priotto G (2017) Human African trypanosomiasis. Lancet 390:2397–2409CrossRefGoogle Scholar
  9. 9.
    Cameron MM, Acosta-Serrano A, Bern C et al (2016) Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for transmission to eliminate visceral leishmaniasis in Bihar, India. Parasit Vectors 9:25PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Espinoza N, Borras R, Abad-Franch F (2014) Chagas disease vector control in a hyperendemic setting: the first 11 years of intervention in Cochabamba, Bolivia. PLoS Negl Trop Dis 8:e2782PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Cucunuba ZM, Nouvellet P, Peterson JK, Bartsch SM, Lee BY, Dobson AP, Basanez MG (2018) Complimentary paths to Chagas disease elimination: the impact of combining vector control with etiological treatment. Clin Infect Dis 66(S4):S293–S300PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Webster JP, Molyneaux DH, Hotez PJ, Fenwick A (2014) The contribution of mass drug administration to global health: past, present and future. Philos Trans R Soc Lond Ser B Biol Sci 369:20130434CrossRefGoogle Scholar
  13. 13.
    Bleakly H (2007) Disease and development: evidence from hookworm eradication in the American south. Q J Econ 122:73–117CrossRefGoogle Scholar
  14. 14.
    Hortez PJ, Molyneux DH, Fenwick A, Kumaresan J, Scahs SE, Sachs J, Savioli L (2007) Control of neglected tropical diseases. N Engl J Med 357:1018–1027CrossRefGoogle Scholar
  15. 15.
    De-jian S, Xu-li D, Ji-hui D (2013) The history of the elimination of lymphatic filariasis in China. Infect Dis Poverty 2:30PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Molyneux D (2006) Elimination of transmission of lymphatic filariasis in Egypt. Lancet 367:966–968PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    GBD 2016 Disease and Injury Incidence and Prevalence Collaborators (2017) Global, regional and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden in Disease Study 2016. Lancet 390:1211–1259Google Scholar
  18. 18.
    Farrell SH, Coffeng LE, Truscott JE, Werkman M, Oor J, de Vias SJ, Anderson RM (2018) Investigating the effectiveness of current and modified World Health Organization guidelines for the control of soil-transmitted helminth infections. Clin Infect Dis 66(S4):S253–S259PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Bethony J, Brooker S, Albanico BM, Geiger SM, Laukus A, Diemert D, Hotez PJ (2006) Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367:1521–1532PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Nath TC, Padmawati RS, Murhandarwati EH (2019) Barriers and gaps in utilization and coverage of mass drug administration against soil-transmitted helminth [STH] infection: an implementation research. J Infect Public Health 12(2):205–212.  https://doi.org/10.1016/j.jph.2018.10.002CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Alemu G, Aschalew Z, Zerihun E (2018) Burden of intestinal helminthes and associated factors three years after initiation of mass drug administration in Arbaminch Zuria district, southern Ethiopia. BMC Infect Dis 18:435PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hong S-T, Chai J-Y, Choi M-H, Huh S, Rim H-J, Lee S-H (2006) A successful experience of soil-transmitted helminth control in the Republic of Korea. Korean J Parasitol 44:177–185PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Debaveye S, Torres G, De Smedt D, Heirman B, Kavanagh S (2018) The public health benefit and burden of mass drug administration programs in Vietnamese schoolchildren: impact of mebendazole. PLoS Negl Trop Dis 12:e0006954PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Taylor-Robinson DC, Maayan N, Soares-Weiser K, Donegan S, Garner P (2015) Deworming drugs for soil-transmitted intestinal worms in children: effects on nutrition indicators, hemoglobin, and school performance. Cochrane Database Syst Rev 7:CD000371Google Scholar
  25. 25.
    Campbell SJ, Nery SV, Doi S et al (2016) Complexities and perplexities: a critical appraisal of the evidence for soil-transmitted helminth infection-related morbidity. PLoS Negl Trop Dis 10:e0004566.  https://doi.org/10.1371/journal.pntd.0004566.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC (2004) Drug resistance in veterinary helminths. Trends Parasitol 20:469–476PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Sutherland IA, Leathwick DM (2011) Anthelminthic resistance in nematode parasites of cattle: a global issue? Trends Parasitol 27:176–181PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Furtado LF, de Paiva Bello ACP, Rabelo EML (2006) Benzimidazole resistance in helminths: from problem to diagnosis. Acta Trop 162:95–102CrossRefGoogle Scholar
  29. 29.
    Zuccherato LW, Furtado LF, Medeiros CD, Pinheiro CDS, Rabelo EM (2018) PCR-RFLP screening of polymorphisms associated with benzimidazole resistance in Necator americanus and Ascaris lumbricoides from different geographical regions in Brazil. PLoS Negl Trop Dis 12:e0006766PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Vaz Nery S, Qi J, Llewellyn S et al (2018) Use of quantitative PCR to assess the efficacy of albendazole against Necator americanus and Ascaris spp. in Manufahi District, Timor-Leste. Parasit Vectors 11:373PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Sanya RE, Nkurunungi G, Hook Spaans R et al (2018) The impact of intensive versus standard anthelminth treatment on allergy-related outcomes, helminth infection intensity and helminth-related morbidity in Lake Victoria fishing communities, Uganda: results from the LaVIISWA cluster randomized trial. Clin Infect Dis 68:1877.  https://doi.org/10.1093/cid/ciy781.CrossRefGoogle Scholar
  32. 32.
    Staal SL, Hogendoorn SKL, Voets SA et al (2018) Prevalence of atopy following mass drug administration with albendazole: a study in school children in Flores Island, Indonesia. Int Arch Allergy Immunol 177:192–198PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hooper PJ, Chu BK, Mikhailov A, Ottesen EA, Bradley M (2014) Assessing progress in reducing the at-risk population after 13 years of the global program to eliminated lymphatic filariasis. PLoS Negl Trop Dis 8:e3333PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ramaiah KD, Ottesen EA (2014) Progress and impact of 13 years of the programme to eliminate lymphatic filariasis on reducing the burden of filarial disease. PLoS Negl Trop Dis 8:e3319PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    World Health Organization (2017) Global programme to eliminate lymphatic filariasis: progress report, 2016. Wkly Epidemiol Rec 92:589–608Google Scholar
  36. 36.
    Irvine MA, Stalk WA, Smith ME, Subramanian S, Singh BJ, Weil GJ, Michael E, Hollingsworth TD (2017) Effectiveness of triple-drug regimen for global elimination of lymphatic filariasis: a modeling study. Lancet Infect Dis 17:451–458PubMedCrossRefGoogle Scholar
  37. 37.
    Srividya A, Sabramanian S, Sadanandone C, Vasuki V, Jambulingam P (2018) Determinants of transmission hotspots and filarial infections in households after eight rounds of mass drug administration in India. Tropical Med Int Health 23:1251–1258CrossRefGoogle Scholar
  38. 38.
    de Souza DK, Otchere J, Ahorlu CS et al (2018) Low microfilaremia levels in three districts in coastal Ghana with at least 16 years of mass drug administration and persistent transmission of lymphatic filariasis. Trop Med Infect Dis 3:105PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Dickson BFR, Graves PM, Aye NN et al (2018) The prevalence of lymphatic filariasis infection and disease following six rounds of mass drug administration in Mandalay Region, Myanmar. PLoS Negl Trop Dis 12:e0006944PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    King CL, Suamnai J, Sanuku N et al (2018) A trial of a triple-drug treatment for lymphatic filariasis. N Engl J Med 379:1801–1810PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Smith DS. Onchocerciasis [river blindness]. Medscape Updated Jun 22, 2018. https://emedicine.medscape.com/article/224309-print
  42. 42.
    Higazi TB, Geary TG, Mackenzie CD (2014) Chemotherapy in the treatment, control, and elimination of human onchocerciasis. RRTM 2014.  https://doi.org/10.2147/RRTM.S36642
  43. 43.
    Cantey PT, Roy SL, Boakye D, Mwingira U, Ottesen EA, Hopkins AD, Sodahlon YK (2018) Transitioning from river blindness control to elimination: steps towards stopping treatment. Int Health 10(Suppl 1):i7–i13.  https://doi.org/10.1093/inthealth/ihx049CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    World Health Organization (2016) Progress towards eliminating onchocerciasis in the WHO Region of the Americas: verification of elimination in Guatemala. Wkly Epidemiol Rec 91:501Google Scholar
  45. 45.
    Zarroug ISA, Hashim K, ElMubark WA et al (2016) The first confirmed elimination of onchocerciasis focus in Africa: Abu Hamed, Sudan. Am J Trop Med Hyg 95:1037–1040PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    World Health Organization (2018) Progress report on the elimination of human onchocerciasis, 2017–2018. Wkly Epidemiol Rec 93:633–648Google Scholar
  47. 47.
    Katabarwa MN, Eyamba A, Nwane P et al (2013) Fifteen years of annual mass treatment of onchocerciasis with ivermectin have not interrupted transmission in the west region of Cameroon. In: J Parasit Res.  https://doi.org/10.1155/2013/4200928CrossRefGoogle Scholar
  48. 48.
    Grizwold E, Eigege A, Ityonzughui C et al (2018) Evaluation of treatment coverage and enhanced mass drug administration for onchocerciasis and lymphatic filariasis in five local government areas treating twice per year in Edo state, Nigeria. Am J Trop Med Hyg 99:396–403CrossRefGoogle Scholar
  49. 49.
    Verver S, Walkeer M, Kim YE et al (2018) How can onchocerciasis elimination in Africa be accelerated? Modeling the impact of increased ivermectin treatment frequency and complementary vector control. Clin Infect Dis 66(S4):S267–S274PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Jacob BG, Loum D, Lakwo TS et al (2018) Community-directed vector control to supplement mass drug distribution for onchocerciasis elimination in Madi mid-North focus of northern Uganda. PLoS Negl Trop Dis 12:e0006702PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Opoku NO, Bakajika DK, Kanza EM et al (2018) Efficacy and safety of a single dose of moxidectin in Onchocerca volvulus infection: a randomized, double-blind ivermectin-controlled trial in Ghana, Liberia, and the Democratic Republic of the Congo. Lancet.  https://doi.org/10.1016/S0140-6736[17]32844-1
  52. 52.
    Boussinesq M (2018) A new powerful drug to combat river blindness. Lancet 392:1170.  https://doi.org/10.1016/S0140-6736[18]30101-6CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hoerauf A, Mand S, Adejei O, Fleischer B, Buttner DW (2001) Depletion of Wolbachia endobacteria in Onchocerca volvulus by doxycycline and microfilaridermia after ivermectin treatment. Lancet 357:1415–1416PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Taylor MJ, Hoerauf A, Townson S, Slatko BE, Ward SA (2014) Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis. Parasitology 141:119–127PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    World Health Organization. Schistosomiasis. February 20, 2018. https://www.who.int/news-room/fact-sheets/detail/schistosomiasis
  56. 56.
    Ahmed SH. Schistosomiasis [Bliharzia]. Medscape; Updated September 20, 2018. https://emedicine.medscape.com/articles/228392-print
  57. 57.
    World Health organization (2013) Schistosomiasis: progress report 2001–2011 and strategic plan 2012–2020. WHO, GenevaGoogle Scholar
  58. 58.
    WHO 2016, Wkly Epidemiol Rec; 52:129–50Google Scholar
  59. 59.
    Bronzan RN, Dorkenoo AM, Agbo YM et al (2018) Impact of community-based integrated mass drug administration on schistosomiasis and soil-transmitted helminth prevalence in Togo. PLoS Negl Trop Dis 12:e0006551.  https://doi.org/10.1371/journal.pntd.0006551CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    WHO/Department of Control of Neglected Tropical Diseases (2017) Schistosomiasis and soil-transmitted helminthiasis: number of people treated in 2016. Wkly Epidemiol Rec 92:749–760Google Scholar
  61. 61.
    Inobaya MT, Chau TN, Ng SK et al (2018) Mass drug administration and the sustainable control of schistosomiasis: an evaluation of treatment compliance in the rural Philippines. Parasit Vectors 11:441PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Elmorshedy H, Bergquist R, El-Ela NE, Eassa SM, Elsakka EE, Barkat R (2015) Can human schistosomiasis mansoni control be sustained in high-risk transmission foci in Egypt? Parasit Vectors 8:372PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lelo AE, Mburu DN, Magoma GN et al (2014) No apparent reduction in schistosome burden or genetic diversity following four years of school-based mass drug administration in Mwea, Central Kenya, a heavy transmission area. PLoS Negl Trop Dis 8:e3221PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Sicar AD, Mwinzi PNW, Onkanga IO et al (2018) Schistosoma mass drug administration regimens and their effect on morbidity among schoolchildren over a 5-year period-Kenya, 2010–2015. Am J Trop Med Hyg 99:362–369CrossRefGoogle Scholar
  65. 65.
    Toor J, Alsallaq R, Truscott JE, Turner HC, Werkman M, Gurarie D, King CH, Anderson RM (2018) Are we on our way to achieving the 2020 goals for schistosomiasis morbidity control using current World Health Organization guidelines? Clin Infect Dis 66(S4):S245–S252PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Ismail M, Bottros S, Metwally A, Williams S, Farghally A, Tao LF, Bennett JL (1999) Resistance to praziquantel: direct evidence from Schistosoma mansoni isolated from Egyptian villages. Am J Trop Med Hyg 60:923–925CrossRefGoogle Scholar
  67. 67.
    Black CL, Steinauer ML, Mwinzi PN, Evan Secor W, Karanja DM, Ciolley DG (2009) Impact of intense, longitudinal retreatment with praziquantel on cure rates of schistosomiasis mansoni in a cohort of occupationally exposed adults in western Kenya. Trop Med Int Health 14:450–457PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cioli D, Botros SS, Wheatcroft-Francklow K et al (2004) Determination of ED50 values for praziquantel in praziquantel-resistant and –susceptible Schistosoma mansoni isolates. Int J Parasitol 34:979–987PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Crellen T, Walker M, Lamberton PH, Kabatereine NB, Tukahebwa EM, Cotton JA, Webster JP (2016) Reduced efficacy of praziquantel against Schistosoma mansoni is associated with multiple rounds of mass drug administration. Clin Infect Dis 63:1151–1159PubMedPubMedCentralGoogle Scholar
  70. 70.
    Danso-Appiah A, De Vlas SJ (2002) Interpreting low praziquantel cure rates of Schistosoma mansoni infections in Senegal. Trends Parasitol 18:125–129PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Melman SD, Steiner ML, Cunningham C et al (2009) Reduced susceptibility to praziquantel among naturally occurring Kenyan isolates of Schistosoma mansoni. PLoS Negl Trop Dis 3:e504PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Botros S, Sayed H, Amer N, El-Ghannam M, Bennett JKL, Day TA (2005) Current status of sensitivity to praziquantel in a focus of potential drug resistance in Egypt. Int J Parasitol 35:787–791PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wang W, Dai JR, Li HJ, Shen XH, Liang YS (2010) Is there reduced susceptibility to praziquantel in Schistosoma japonicum? Evidence from China. Parasitology 137:1905–1912PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Xu J, Xu JF, Li SZ, Zhang LJ, Wang Q, Zhu HH, Zhou XN (2015) Integrated control programmes for schistosomiasis and other helminth infections in P.P. China. Acta Trop 141:332–341PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Fallon PG, Mubarak JS, Fookes RE, Niang M, Butterworth AE, Sturrock RF, Doenhoff MJ (1997) Schistosoma mansoni: maturation rate and drug susceptibility of different geographic isolates. Exp Parasitol 86:29–36PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Bergquist R, Utzinger J, Keiser J (2017) Controlling schistosomiasis with praziquantel: how much longer without a viable alternative? Infect Dis Poverty 6:74PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bobo LD, Novak N, Munoz B, Hsieh YH, Quinn TC, West S (1997) Severe disease in children with trachoma is associated with persistent Chlamydia trachomatis infection. J Infect Dis 176:1524–1530PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Mariotti SP, Pascolini D, Rose-Nussbaumer J (2009) Trachoma: global magnitude of a preventable cause of blindness. Br J Ophthalmol 93:563–568PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    WHO 2018; Wkly Epidemiol Rec; 93: 359–80Google Scholar
  80. 80.
    Lietman TM, Pinset A, Liu F, Deiner M, Hollingsworth D, Porco TC (2018) Models of trachoma transmission and their policy implications: from control to elimination. Clin Infect Dis 66(S4):S275–S280PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Taylor HR, Burton MJ, Hadddad D, West S, Trachoma WH (2014) Lancet 384:2142–2152PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Keenan JD, Tadesse Z, Gebresillasie S et al (2018) Mass azithromycin distribution for hyperendemic trachoma following a cluster-randomized trial: a continuation study of randomly reassigned subclusters [TANA II]. PLoS Med 15:e1002633PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lietman TM, Pinset A, Liu F, Deiner M, Hollingswort TD, Porco TC (2018) Models of trachoma transmission and their policy implications: from control to elimination. Clin Infect Dis 66(S4):S275–S280PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Emerson PM, Hooper PJ, Sarah V (2017) Progress and projection in the program to eliminate trachoma. PLoS Negl Trop Dis 11:e0005402PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    West SK, Moncada J, Munoz B et al (2014) Is there evidence for resistance of ocular Chlamydia trachomatis to azithromycin after mass treatment for trachoma control? J Infect Dis 210:65–71PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    O’Brien KS, Emerson P, Hooper PJ, Reingold AL, Dennis EG, Keenan JD, Lietman TM, Oldenburg CE (2019) Antimicrobial resistance following mass distribution for trachoma: a systemic review. Lancet Infect Dis 19:e14–e25PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Mitja O, Godornes C, Houinei W et al (2018) Re-emergence of yaws after single mass azithromycin treatment followed by targeted treatment: a longitudinal study. Lancet 391:1599–1607PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Oldenburg CE, Arzika AM, Amza A et al (2018) Mass azithromycin to prevent childhood mortality: a pooled analysis of cluster-randomized trials. Am J Trop Med Hyg 0:1–5.  https://doi.org/10.4269/ajmh.18-0846.CrossRefGoogle Scholar
  89. 89.
    World Health Organization Global Malaria Programme (2015) World malaria report 2015. WHO, Geneva. Report No.: 978 92 4 156483 0Google Scholar
  90. 90.
    World Health Organization (2010) Guidelines for treatment of malaria, 2nd edn. World Health Organization, GenevaGoogle Scholar
  91. 91.
    World Health Organization. Global Malaria Programme. The role of mass drug administration, mass screening and treatment, and focal screening and treatment for malaria. http://www.who.int/malaria/publicatiobna/atoz/role-of-mda-for-malaria.pdf?ua=1
  92. 92.
    Brady OJ, Slater HC, Ross PP et al (2017) Falciparum malaria: a consensus modeling study. Lancet Glob Health 5(7):e680-e687.  https://doi.org/10.1016/S2214-109X(17)30220-6PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Lwin KM, Imwong M, Suangkanarat P et al (2015) Elimination of Plasmodium falciparum in an area of multi-drug resistance. Malar J 14:319PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Landier J, Parker DM, Thu AM, Lwin KM, Delmas G, Nopsten FH (2018) Effect of generalized access to early diagnosis and treatment and targeted mass drug administration on Plasmodium falciparum malaria in Eastern Myanmar: an observational study of a regional programme. Lancet 39:1916–1926CrossRefGoogle Scholar
  95. 95.
    Tripura R, Peto TJ, Chea N et al (2018) A controlled trial of mass drug administration to interrupt transmission of multidrug-resistant malaria in Cambodian villages. Clin Infect Dis 67:817–826PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Pongvongsa T, Phommasone K, Adhikari B et al (2018) The dynamic of asymptomatic Plasmodium falciparum infections following mass drug administrations with dihydroarteminisin-pipreaquine plus a single low dose of primaquine in Savannakhet Province, Laos. Malar J 17:405PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Deng C, Huang B, Wang Q et al (2018) Large-scale artemisinin-piperaquine mass drug administration with or without primaquine dramatically reduces malaria in a highly endemic region of Africa. Clin Infect Dis 67:1670–1676PubMedPubMedCentralGoogle Scholar
  98. 98.
    Morris U, Msellem MI, Mkali H et al (2018) A cluster randomized controlled trial of two rounds of mass drug administration in Zanzabar, a malaria pre-elimination setting---high coverage and safety, but no impact on transmission. BMC Med 16:215PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Kondrashin A, Baranova AM, Ashley EA, Recht J, White NJ, Sergiev VP (2014) Mass primaquine treatment to eliminate vivax malaria: lessons from the past. Malar J 13:51PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Kaneko A, Taleo G, Kalkoa M, Yamar S, Kobayakawa T, Bjorkman A (2000) Malaria eradication on islands. Lancet 356:1560–1564PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    White NJ (2017) Does antimalarial mass drug administration increase or decrease the risk of resistance? Lancet Infect Dis 17:e15–e20PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Kim Y, Schneider KA (2013) Evolution of drug resistance in malaria parasite populations. Nat Educ Knowledge 4:6Google Scholar
  103. 103.
    White NJ, Pongtavornpinyo W, Maude RJ et al (2009) Hyperparasitemia and low dosing are important source of anti-malarial drug resistance. Malar J 8:253PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zuber JA, Takala-Harrison S (2018) Multidrug-resistant malaria and the impact of mass drug administration. Infect Drug Resist 11:299–306PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Leang R, Taylor WR, Bouth DM et al (2015) Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in Western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59:4719–4726PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Spring MD, Lin JT, Manning JE et al (2015) Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch 13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 15:683–691PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Landier J, Kajeechiwa L, Thwin MM et al (2017) Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: a pilot trial in four villages of Eastern Myanmar. Wellcome Open Res 2:81PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kobylinski KC, Ubalee R, Ponlawat A et al (2017) Ivermectin susceptibility and sporontocidal effect in greater Mekong subregion Anopheles. Malar J 16:280PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Hortez PJ, Fenwick A, Molyneux DH (2019) Collateral benefits of preventive chemotherapy---expanding the war on neglected tropical diseases. N Engl J Med 380:2389–2391CrossRefGoogle Scholar
  110. 110.
    Engelman D, Kiang K, Chosidow O et al (2013) Towards the global control of human scabies: introducing the International alliance for the Control of Scabies. PLoS Negl Trop Dis 7(8):e2167PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Mitja O, Houinei W, Moses P et al (2015) Mass treatment with single-dose azithromycin for yaws. N Engl J Med 372:703–710PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Keenan ID, Bailey RL, West SK et al (2018) Azithromycin to reduce childhood mortality in sub-Saharan Africa. N Engl J Med 378:1583–1592PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Doel AK, Fleming FM, Calvo-Urbano, et al. Schistomiasis–assessing progress towards the 2020 and 2025 global goals. N. Engl J Med 2019; 38: 2519–28Google Scholar
  114. 114.
    McManus DP. Defeating Schistosomiasis. N Engl J Med 2019; 38: 2567–8PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • I. W. Fong
    • 1
  1. 1.St. Michael’s HospitalUniversity of TorontoTorontoCanada

Personalised recommendations