Issues in Therapeutics of Some Bacterial Infections: Vancomycin Use, Osteomyelitis, Endocarditis, and Staphylococcus aureus Bacteremia

  • I. W. Fong
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)


There are several contentious issues in the management of some bacterial infections where treatment guidelines and practice are based on scant clinical or in vitro data without proof by randomized trials. Among these that are covered in this chapter are the therapeutic issues in: (1) vancomycin dosing to obtain AUC24/MIC ≥400 and trough concentration 15–20 μg/mL for optimal efficacy; (2) prolonged intravenous antibiotic[s] for osteomyelitis; (3) the need for prolonged intravenous therapy for Staphylococcus aureus bacteremia; and (4) the long-held view and guidelines of the absolute need for 4–6 weeks intravenous antibiotics for bacterial endocarditis. This chapter reviews the evidence that support or fail to confirm the basis of current recommendations and new data from randomized trials.


Vancomycin trough levels Staphylococcal infections Nephrotoxicity AUC/MIC Intravenous antibiotics Bacterial endocarditis Osteomyelitis Staphylococcus aureus Bacteremia 


  1. 1.
    Rubenstein E, Keynan Y (2014) Vancomycin revisited---60 years later. Front Public Health 2:217. Scholar
  2. 2.
    Kim SH, Kim KH, Kim HB et al (2008) Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 52:192–197PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Stryjiewski ME, Szczech LA, Benjamin DK et al (2007) Use of vancomycin or first-generation cephalosporin for the treatment of hemodialysis-dependent patients with methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 44:190–196CrossRefGoogle Scholar
  4. 4.
    Khatib R, Johnson LB, Fakih MG et al (2006) Persistence in Staphylococcus aureus bacteremia: incidence, characteristics of patients and outcome. Scand J Infect Dis 38:7–14PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Britt NS, Patel N, Shireman TI, El Atrouni WI, Harvat RT, Steed ME (2017) Relationship between vancomycin tolerance and clinical outcomes in Staphylococcus aureus bacteremia. J Antimicrob Chemother 72:535–542PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Moellering RC Jr (2006) Vancomycin: a 50-year reassessment. Clin Infect Dis 42(Suppl 1):S2–S4Google Scholar
  7. 7.
    Rybak MJ, Albrecht LM, Boilke SC, Chandrasekar PH (1990) Nephrotoxicity of vancomycin, alone and with an aminoglycoside. J Antimicrob Chemother 25:679–687PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lowdin E, Odenholt I, Cars O (1998) In vitro studies of pharmacodynamics properties of vancomycin against Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother 42:2739–2744PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Craig WA, Ebert S (1991) Kinetics and regrowth of bacteria in vitro: a review. Scand J Infect Dis 74(Suppl):S15–S22Google Scholar
  10. 10.
    Levison ME, Levison JH (2009) Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin N Am 23:791. Scholar
  11. 11.
    Eagle H (1948) A paradoxical zone phenomenon in the bactericidal action of penicillin in vitro. Science 107:10744–10745CrossRefGoogle Scholar
  12. 12.
    Jarrad AM, Blastkovich MAT, Prasetyoputri A, Karoli T, Hansford KA, Cooper MA (2018) Detection and investigation of Eagle effect resistance to vancomycin in Clostridium difficile with an ATP-bioluminescence assay. Front Microbiol 9:1420. Scholar
  13. 13.
    Lamp KC, Rybak MJ, Bailey EM, Kaatz GW (1992) In vitro pharmacodynamic effect of concentration, pH, and growth phase on serum bactericidal activities of daptomycin and vancomycin. Antimicrob Agents Chemother 36:2709–2714PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    SaKoulas G, Moise-Broder PA, Schentag J, Forrest A, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    van Hal SJ, Lodise TP, Paterson DL (2012) The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 54:755–771PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Marvos MN, Tansarli GS, Vardakas KZ, Rafailidis PI, Karageorgopoulus DE, Faragas ME (2012) Impact of vancomycin minimum inhibitory concentration on clinical outcomes of patients with vancomycin-susceptible Staphylococcus aureus infections. Int J Antimicrob Agents 40:496–509CrossRefGoogle Scholar
  17. 17.
    Jacob JT, DiazGranados CA (2013) High vancomycin minimum inhibitory concentration and clinical outcomes in adults with methicillin-resistant Staphylococcus aureus infections. Int J Infect Dis 17:e93–e100PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kalil AC, Van Schooneveld TC, Fey PD, Rupp ME (2014) Association between vancomycin minimum inhibitory concentration and mortality among patients with Staphylococcus aureus bloodstream infections. A systematic review and meta-analysis. JAMA 312:1552–1564PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Song K-H, Kim M, Kim CJ et al (2017) Impact of vancomycin MIC on treatment outcomes in invasive Staphylococcus aureus infections. Antimicrob Agents Chemother 61:e01845PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rybak M, Lomaestro B, Rotschafer JC et al (2009) Therapeutic monitoring of vancomycin in adults: a consensus review of the American Society of Health-System Pharmacists, the infectious disease Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm 66:82–98PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Elyasi S, Khalili H (2016) Vancomycin dosing nomograms targeting high serum trough levels in different populations: pros and cons. Eur J Clin Pharmacol 72:777–788PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52:e18–e55PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Rybak MJ (2006) Pharmacokinetic and pharmacodynamic properties of vancomycin. Clin Infect Dis 42(Suppl 1):S35–S39PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Hale CM, Seabury RW, Steele JM, Darko W, Miller CD (2017) Are vancomycin trough concentrations of 15 to 20 mg/L associated with increased attainment of an AUC/MIC ≥400 in patients with presumed MRSA infections? J Pharm Pract 30:32935Google Scholar
  25. 25.
    Tkachuk S, Collins K, Ensom MHH (2018) The relationship between vancomycin trough concentrations and AUC/MIC ratios in pediatric patients: a qualitative review. Pediatr Drugs 20:153–164CrossRefGoogle Scholar
  26. 26.
    Castaneda X, Garcia-de-la-Maria C, Gasch O et al (2017) AUC/MIC pharmacodynamics target is not a good predictor of vancomycin efficacy in methicillin-resistant Staphylococcus aureus experimental endocarditis. Antimicrob Agents Chemother 61:e02486PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Steinmetz T, Eliakim-Raz N, Goldberg E, Leibovici L, Yahav D (2015) Association of vancomycin serum concentration with efficacy in patients with MRSA infections: a systematic review and meta-analysis. Clin Microbiol Infect 21:665–673PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Meng L, Fang Y, Chen Y, Zhu H, Long R (2015) High versus low vancomycin serum regimen for gram-positive infections: a meta-analysis. J Chemother 27:213–220PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Prybylski JP (2015) Vancomycin trough concentration as a predictor of clinical outcomes in patients with Staphylococcus aureus bacteremia: a meta-analysis of observational studies. Pharmacotherapy 35:889–898PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Song K-H, Kim BN, Kim H-S et al (2015) Impact of area under the concentration-time curve to minimum inhibitory concentration ratio on vancomycin treatment outcomes in methicillin Staphylococcus aureus bacteremia. Int J Antimicrob Agents 46:689–695PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Liang X, Fan Y, Yang M et al (2018) A prospective multicenter clinical observational study on vancomycin efficiency and safety with therapeutic drug monitoring. Clin Infect Dis 67(S2):S249–S255PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shen K, Yang M, Fan Y et al (2018) Model-based evaluation of the clinical microbiological efficacy of vancomycin: a prospective study of Chinese adult in-house patients. Clin Infect Dis 67(S2):S256–S262PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Barriere SL, Stryjewski ME, Corey GR, Genter FC, Rubinstein E (2014) Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: a retrospective, post-hoc, subgroup analysis of the phase 3 ATTAIN studies. BMC Infect Dis 14:183PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Cao G, Liang X, Zhang J et al (2015) Vancomycin serum trough concentration vs. clinical outcome in patients with gram-positive infection: a retrospective analysis. J Clin Pharm Ther 40:640–644PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    McNeil JC, Kaplan SL, Vallejo JG (2017) The influence of the route of antibiotic administration, methicillin susceptibility, vancomycin duration and serum trough concentration on outcomes of pediatric Staphylococcus aureus bacteremic osteoarticular infection. Pediatr Infect Dis J 36:572–577PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Hsu AJ, Hamdy RF, Huang Y, Olson JA, Ghobrial GJS, Hersh AI, Tamma PD (2018) Association between vancomycin trough concentrations and duration of methicillin-resistant Staphylococcus aureus bacteremia in children. J Pediatr Infect Dis 7:338–341Google Scholar
  37. 37.
    McNeil JC, Kok EY, Forbes AR et al (2016) Healthcare-associated Staphylococcus aureus bacteremia in children: evidence for reverse vancomycin creep and impact of vancomycin trough values on outcome. Pediatr Infect Dis J 35:263–268PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Yoo RN, Kim SH, Lee J (2017) Impact of initial vancomycin trough concentration on clinical and microbiological outcomes of methicillin-resistant Staphylococcus aureus bacteremia in children. J Korean Med Sci 32:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Dong M-H, Wang J-W, Wu Y, Chen B-Y, Yu M, Wen A-D (2015) Evaluation of body weight-based vancomycin therapy and the incidence of nephrotoxicity: a retrospective study in northwest of China. Int J Infect Dis 37:125–128PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Filippone EJ, Kraft WK, Farber JL (2017) The nephrotoxicity of vancomycin. Clin Pharmacol Ther 102(3):459–469PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jeffres MN (2017) The whole price of vancomycin: toxicities, troughs, and time. Drugs 77:1143–1154PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hammond DA, Smith MN, Li C, Hayes SM, Lusardi K, Bookstaver PB (2017) Systematic review and meta-analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infect Dis 64:666–674PubMedPubMedCentralGoogle Scholar
  43. 43.
    Horey A, Mergenhagen K, Mattappallil A (2012) The relationship of nephrotoxicity to vancomycin trough serum concentrations in a veteran’s population: a retrospective analysis. Ann Pharmacother 46:1477–1483PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Wong-Beringer A, Joo J, Tse E, Beringer P (2011) Vancomycin-associated nephrotoxicity: a critical appraisal of risk with high-dose therapy. Int J Antimicrob Agents 37:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Elyasi S, Khalili H, Dashti-Khavidaki S, Mohammadpour A (2012) Vancomycin-induced nephrotoxicity: mechanisms, incidence, risk factors and special populations. A literature review. Eur J Clin Pharmacol 68:1243–1255PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Van Hal S, Paterson D, Lodise T (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain troughs between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57:734–744PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16:3365–3370PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Chavada R, Ghosh N, Sandaradura I, Maley M, Van Hal SJ (2017) Establishment of an AUC-24 threshold for nephrotoxicity is a step towards individualized vancomycin dosing for methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 61:e02535PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Neely MN, Kato L, Youn G et al (2018) A prospective trial on the use of trough concentration versus area under the curve [AUC] to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother 62(2):e02042-17. Scholar
  50. 50.
    Truong J, Veillette JJ, Forland SC (2018) Outcomes of vancomycin plus β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 62(2):e01554-17. Scholar
  51. 51.
    Jung YJ, Koph Y, Hong SB et al (2010) Effect of vancomycin plus rifampin in the treatment of nosocomial methicillin-resistant Staphylococcus aureus pneumonia. Crit Care Med 38:175–180PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Thwaites GE, Scarborough M, Szubert A et al (2018) Adjunctive rifampin for Staphylococcus aureus bacteremia [ARREST]: a multicentre, randomized, double-blind, placebo-controlled trial. Lancet 391:668–678PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Leonard SN (2012) Synergy between vancomycin and nafcillin against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamics model. PLoS One 7:e42103PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hagihara M, Wiskirchen DE, Kuti JL, Nicolau DP (2012) In vitro pharmacodynamics of vancomycin and cefazolin alone and in combination against methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 56:202–207PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Davis JS, Hal SV, Tong SY (2015) Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin Respir Crit Care Med 36:3–16PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Dilworth TJ, Ibrahim O, Hall P, Silwinski J, Walraven C, Mercier R-C (2014) β-Lactams enhance vancomycin activity against methicillin-resistant Staphylococcus aureus bacteremia compared to vancomycin alone. Antimicrob Agents Chemother 2014(58):102–109CrossRefGoogle Scholar
  57. 57.
    Truong J, Veillette JJ, Fortland SC (2018) Outcomes of vancomycin plus a β-lactam versus vancomycin only for treatment of methicillin-resistant Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 62:e001554-17Google Scholar
  58. 58.
    Davis J, Sud A, O’Sullivan MVN et al (2016) Combination of vancomycin and β-lactam therapy for methicillin-resistant Staphylococcus aureus bacteremia: a pilot multicenter randomized controlled trial. Clin Infect Dis 62:173–180PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Blyth MJR, Kincaid R, Craigen M, Bennet G (2001) The changing epidemiology of acute and subacute hematogenous osteomyelitis in children. J Bone Joint Surg (Br) 83:83–102CrossRefGoogle Scholar
  60. 60.
    Peltola H, Unkila-Kallio L, Kallio MJ (1997) Simplified treatment of acute staphylococcal osteomyelitis of childhood. The Finnish Study Group. Pediatrics 99:846–850PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Peltola H, Paakkonen M, Kallio P, Kallio MJ (2010) Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: prospective, randomized trial on 131 culture-positive cases. Pediatr Infect Dis J 29:1123–1128PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Le Saux N, Howard A, Barrowman NJ, Gaboury I, Samson M, Moher D (2002) Shorter courses of parenteral antibiotic therapy do not appear to influence response rates for children with acute hematogenous osteomyelitis: a systematic review. BMC Infect Dis 2:16PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zaoutis T, Localio AR, Leckerman K, Saddlemiore S, Bertoch D, Keren R (2009) Prolonged intravenous versus early transition to oral antimicrobial therapy for acute osteomyelitis in children. Pediatrics 123:636–642PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Keren R, Shah SS, Srivastava R et al (2015) Comparative effectiveness of intravenous vs oral antibiotics for post-discharge treatment of acute osteomyelitis in children. JAMA Pediatr 169:120–128PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dartnell J, Ramachandran M, Katchburian M (2012) Hematogenous acute and subacute pediatric osteomyelitis: a systematic review of the literature. J Bone Joint Surg Br 94:584–595PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Batchelder N, So TY (2016) Transitioning antimicrobials from intravenous to oral in pediatric acute uncomplicated osteomyelitis. World J Clin Pediatr 5:224–250CrossRefGoogle Scholar
  67. 67.
    Waldvogel FA, Medoff G, Swartz MN (1970) Osteomyelitis: a review of clinical features, therapeutic considerations and unusual aspects [first of three parts]. N Engl J Med 282:198–206PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Thabit AK, Fatani DF, Bamakhrama MS, Barnawi OA, Basudan LO, Alhejaili SF (2019) Antibiotic penetration into bone and joints: an updated review. Int J Infect Dis 81:128–136PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Li HK, Agweyu A, English M, Bejon P (2015) An unsupported preference for intravenous antibiotics. PLoS Med 12(5):e1001825PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Stengel D, Bauwens K, Sehoul J, Ekkernkamp A, Porzsolt F (2001) Systematic review and meta-analysis of antibiotic therapy for bone and joint infections. Lancet Infect Dis 1:175–188PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Lazzarinni L, Lipsky BA, Mader JT (2005) Antibiotic treatment of osteomyelitis: what have we learned from 30 years of clinical trials? Int J Infect Dis 9:127–138CrossRefGoogle Scholar
  72. 72.
    Zimmerli W (2010) Vertebral osteomyelitis. N Engl J Med 362:1022–1029PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Spellberg B, Lipsky BA (2012) Systemic antibiotic therapy for chronic osteomyelitis in adults. Clin Infect Dis 54:393–407PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zimmerli W, Widner AF, Blatter M, Frei R, Ochsner PE (1998) Foreign-body infection [FB] study group role of rifampin for treatment of orthopedic implanted related staphylococcal infections: a randomized controlled trial. JAMA 279:1537–1541PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Conterno LO, Turchi MD (2013) Antibiotics for treating chronic osteomyelitis in adults. Cochrane Database Syst Rev (9):CD004439.
  76. 76.
    Embil JM, Rose G, Trepman E et al (2006) Oral antimicrobial therapy for diabetic foot osteomyelitis. Foot Ankle Int 27:1–779CrossRefGoogle Scholar
  77. 77.
    Lipsky BA, Berendt AR, Cornia PB et al (2012) 2012 Infectious Disease Society of America clinical practice guidelines for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis 54:132–173CrossRefGoogle Scholar
  78. 78.
    Tone A, Nguyen S, Devemy F et al (2015) Six-week versus twelve-week antibiotic therapy for nonsurgically treated diabetic foot osteomyelitis: a multicenter open-label controlled randomized study. Diabetes Care 38:302–307PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Lipsky BA, Itani K, Noprden C, Linezolid Diabetic Foot Infection Study Group (2014) Treating foot infections in diabetes patients: a randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin Infect Dis 69:309–322Google Scholar
  80. 80.
    Li HK, Rombach I, Zambellas R et al (2019) Oral versus intravenous antibiotics for bone and joint infections. N Engl J Med 380:425–436PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Fernandez-Gerlinger M-P, Arvieu R, Lebeaux D, Rouis K, Guigui P, Minard J-L, Bouyer B (2019) Successful 6-week antibiotic treatment for early surgical site infections in spinal surgery. Clin Infect Dis 68:856–861CrossRefGoogle Scholar
  82. 82.
    Chausade H, Uckay I, Vaugnat A, Druon J, Gra G, Rosset P, Lipsky BA, Bernard L (2017) Antibiotic therapy duration for prosthetic joint infections treated by debridement and implant retention [DAIR]: similar long-term remission for 6 weeks as compared to 12 weeks. Int J Infect Dis 63:37–42CrossRefGoogle Scholar
  83. 83.
    Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG (2008) Adjunctive use of rifampin for treatment of Staphylococcus aureus infections. A systematic review of the literature. Arch Intern Med 168:805–819PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Baciewicz AM, Chrisman CR, Finch CK, Self TH (2008) Update on rifampin and rifabutin drug interactions. Am J Med Sci 335:126–136PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Zimmerli W, Sendi P (2019) Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and orthopedic-device-related infections. Antimicrob Agents Chemother 63:e01746PubMedPubMedCentralGoogle Scholar
  86. 86.
    Lora-Tamayo J, Murillo O, Iribarren JA et al (2013) A large multicenter study of methicillin-susceptible and methicillin-resistant Staphylococcus aureus prosthetic joint infections managed with implant retention. Clin Infect Dis 56:182–194PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Riedel DJ, Weekes E, Forrest GN (2008) Addition of rifampin to standard therapy for treatment of native valve endocarditis caused by Staphylococcus aureus. Antimicrob Agents Chemother 52:2463–2467PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Guerillot R, Goncalves da Silva A, Monk I et al (2018) Convergent evolution driven by rifampin exacerbates the global burden of drug-resistant Staphylococcus aureus. mSphere 3(1):e00550-17. Scholar
  89. 89.
    Klein S, Nurjadi D, Eigenbrod T, Bode KA (2016) Evaluation of antibiotic resistance to orally administrable antibiotics in staphylococcal bone and joint infections in one of the largest university hospital in Germany: is there a role for fusidic acid? Int J Antimicrob Agents 47:155–157PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sendzik J, Shakibaei M, Schaffer-Korting M, Stahlmann R (2005) Fluoroquinolones cause changes in extracellular matrix, signaling proteins, metalloproteinases and caspase-3 in cultured human tendon cells. Toxicology 212:24–36PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Corps AN, Harral RL, Curry VA, Fenwick SA, Hazleman BL, Riley G (2002) Ciprofloxacin enhances stimulation of matrix metalloproteinase 3 expression by interleukin-1β in human tendon-derived cells. A potential mechanism of fluoroquinolone-induced tendinopathy. Arthritis Rheum 46:3034–3040PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Osmon DR, Berbari EF, Berendt AR et al (2013) Diagnosis and management of prosthetic joint infection: clinical practice guidelines by the Infectious Diseases Society of America. Clin Infect Dis 56:e1–e5CrossRefGoogle Scholar
  93. 93.
    MacGregor RR, Graziani AL (1997) Oral administration of antibiotics: a rational alternative to the parenteral route. Clin Infect Dis 24:457–467PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Smith JA, Pham PA, Hsu AJ. John Hopkins ABX guide. Accessed 4 Mar 2019
  95. 95.
    Uhlemann ACV, Hafer C, Miko BA et al (2013) Emergence of sequence type 398 as a community- and healthcare-associated methicillin susceptible Staphylococcus aureus in northwestern Manhattan. Clin Infect Dis 57:700–703PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Paul M, Bishara J, Yahav D et al (2015) Trimethoprim-sulfamethoxazole versus vancomycin for severe infections caused by methicillin resistant Staphylococcus aureus: randomized controlled trial. BMJ 350:h2219PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Fralick M, MacDonald EM, Gomes T, Canadian Drug Safety and Effectiveness Research Network et al (2014) Co-trimoxazole and sudden death in patients receiving renin-angiotensin system: population based study. BMJ 3491:g6196CrossRefGoogle Scholar
  98. 98.
    Antoniou T, Holpland S, MacDonald EM, Gopmes T, Mamdani MM, Juurlink DN, Canadian Drug Safety and Effectiveness Network (2015) Trimethoprim-sulfamethoxazole and risk of sudden death among patients taking spironolactone. CMAJ 187:E138PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Fernandes P (2016) Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med 6:a025437. Scholar
  100. 100.
    Christiansen K (1999) Fusidic acid adverse drug reactions. Int J Antimicrob Agents 12(Suppl 2):S3–S9PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Holmes NE, Charles PGP (2009) Safety and efficacy review of doxycycline. Clin Med Ther 1:471–482. Scholar
  102. 102.
    Yuk JH, Dignani MC, Harris RL, Bradshaw MW, Wiliams TW Jr (1991) Minocycline as an alternative antistaphylococcal agent. Rev Infect Dis 13:1023–1024PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ruthe JJ, Menon A (2007) Tetracyclines as an oral option for patients with community onset skin and soft tissue infections caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 51:3298–3303CrossRefGoogle Scholar
  104. 104.
    Jones CH, Tuckman M, Howe AYM, Orlowski M, Mullen S, Chan K, Bradford PA (2006) Diagnostic PCR analysis of the occurrence of methicillin and tetracycline resistance genes among Staphylococcus aureus isolates from phase 3 clinical trials of tigecycline for complicated skin and skin structure infections. Antimicrob Agents Chemother 50:505–510PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kresken M, Becker K, Selfert H, Leitner E, Korber-Irrgang B, von Eiff C, Loschmann PA, Study Group (2011) Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multi-resistant pathogens, in Germany. Eur J Clin Microbiol Infect Dis 30:1095–1103PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Stepensky D, Kleinberg L, Hoffmen A (2003) Bone as an effect compartment. Models for uptake and release of drugs. Clin Pharmacokinet 42:863–881PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Lee HM, Ciano SG, Tiiter G, Ryan ME, Komanoff E, Golub LM (2004) Subantimicrobial dose of doxycycline efficacy as a matrix metalloproteinase inhibitor in chronic periodontitis patients is enhanced when combined with non-steroidal anti-inflammatory drugs. J Periodontal 75:453–463CrossRefGoogle Scholar
  108. 108.
    Greenwald RA, Moak SA, Ramamurthy NS, Golub LM (1992) Tetracyclines suppress metalloproteionase activity in adjuvant arthritis and in combination with flurbiprofen, ameliorate bone damage. J Rheumatol 19:927–938PubMedPubMedCentralGoogle Scholar
  109. 109.
    Golib LM, Greenwald RA, Ramamurthy NS, McNamara TF, Rifkin BR (1991) Tetracyclines inhibit connective tissue breakdown: new therapeutic implications for a family of drugs. Crit Rev Oral Biol Med 2:297–321CrossRefGoogle Scholar
  110. 110.
    Sasaki T, Kaneko H, Ramamurthy NS, Golub LM (1991) Tetracycline administration restores osteoblast structure and function during experimental diabetes. Anat Rec 231:25–34PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Rifkin BR, Vermillo AT, Golub LM, Ramamurthy NS (1994) Modulation of bone resorption by tetracyclines. Ann N Y Acad Sci 732:165–180PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Zernicke RF, Wohl GR, Greenwald RA, Moak SA, Leng W, Golub LM (1997) Administration of systemic matrix metalloproteinase inhibitors maintain bone mechanical integrity in adjuvant arthritis. J Rheumatol 24:1324–1331PubMedPubMedCentralGoogle Scholar
  113. 113.
    Zhang Z, Nix CA, Ercan UK, Gerstenhaber JA, Joshi SG, Zhong Y (2014) Calcium binding-mediated sustained release of minocycline from hydrophilic multilayer coatings targeting infection and inflammation. PLoS One 9:e84360PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Carris NW, Pardo J, Montero J, Shaeer KM (2015) Minocycline as a substitute for doxycycline in targeted scenarios: a systematic review. Open Forum Infect Dis 2:ofv178. Scholar
  115. 115.
    Tariq R, Cho J, Kapoopr S, Orenstein R, Singh S, Ds P, Khanna S (2018) Low risk of primary Clostridium difficile infection with tetracyclines: a systematic review and meta-analysis. Clin Infect Dis 66:514–522PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Pant S, Patel NJ, Deshmukh A et al (2015) Trends in infective endocarditis incidence, microbiology, and valve replacement in the United States from 2000 to 2011. J Am Coll Cardiol 65:2070–2076PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Wurcel AG, Anderson JE, Chui KK et al (2016) Increasing infectious endocarditis admissions among young people who inject drugs. Open Forum Infect Dis 3(3):ofw157. Scholar
  118. 118.
    Wang A, Gaca JG, Chiu VH (2018) Management considerations in infective endocarditis. JAMA 320:72–83PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Heldman AW, Hartert TV, Ray SC et al (1996) Oral antibiotic treatment of right-sided staphylococcal endocarditis in injection drug users: prospective randomized comparison with parenteral therapy. Am J Med 101:68–76PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Stamboulian D, Bonvehi P, Arevalo C, Bologna R, Cassetti I, Scilingo V, Efron E (1991) Antibiotic management of outpatients with endocarditis due to penicillin-susceptible streptococci. Rev Infect Dis 14(Suppl 2):S160–S163CrossRefGoogle Scholar
  121. 121.
    Al-Omari A, Cameron DW, Lewe C, Corrales-Medina VF (2014) Oral antibiotic therapy for the treatment of infective endocarditis: a systemic review. BMC Infect Dis 14:140PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Mzabi A, Kereis S, Richaud C, Podglajen I, Fernandez-Gerlinger MP, Mainardi JL (2016) Switch to oral antibiotics in the treatment of infective endocarditis is not associated with increased risk of mortality in non-severely ill patients. Clin Microbiol Infect 22:607PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Iversen K, Ihlemann N, Gill SU et al (2019) Partial oral versus intravenous antibiotic treatment of endocarditis. N Engl J Med 380:415–424PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Bundgaard H, Ihlemann N, Gill SU et al (2019) Long-term outcomes of partial oral treatment of endocarditis. N Engl J Med 380:1373–1374PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Frimodt-Moller N, Espersen F, Skinhoi JP, Rosdahl VT (1997) Epidemiology of Staphylococcus aureus bacteremia in Denmark from 1957 to 1990. Clin Microbiol Infect 3:297–305PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Laupland KB, Lytikainen O, Sogaard M et al (2013) The changing epidemiology of Staphylococcus aureus blood-steam infection: a multinational population-based surveillance study. Clin Microbiol Infect 19:465–471PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    El Atrouni WI, Knoll BM, Lahr BD et al (2009) Temporal trends in Staphylococcus aureus bacteremia in Olmsted County, Minnesota, 1998 to 2005. Clin Infect Dis 49:e130PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    van Hal SJ, Jensen SO, Vaska VL et al (2012) Predictors of mortality in Staphylococcus aureus bacteremia. Clin Microbiol Rev 25:362–386PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Cosgrove SE, Sakoulas G, Perencevich EN et al (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia. Clin Infect Dis 36:53–59PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Le Moing V, Alla F, Doco-Lecompte T et al (2015) Staphylococcus aureus bloodstream infection and endocarditis—a prospective cohort study. PLoS One 10(5):e0127385. Scholar
  131. 131.
    Bassetti M, Peghin M, Trecarichi EM et al (2017) Characteristics of Staphylococcus aureus bacteremia and predictors of early and late mortality. PLoS One 12(2):e0170236PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Kaasch AJ, Barlow G, Edgeworth JD et al (2014) Staphylococcus aureus blood-steam infection: a pooled analysis of five prospective, observational studies. J Infect 68:242–251PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Liu C, Bayer A, Cosgrove SE et al (2011) Clinical practice guidelines by the infectious disease society of America for the treatment of methicillin resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis 52(3):e18–e55PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Mermel LA, Allon M, Bouza E et al (2009) Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection. 2009 update by the infectious diseases society of America. Clin Infect Dis 49:1–45PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Fowler VG Jr, Olsen MK, Corey R et al (2003) Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch Intern Med 163:2066–2072PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Heriot GS, Cronin K, SYC T, Cheng AC, Liew D (2017) Criteria for identifying patients with Staphylococcus aureus bacteremia who are at low risk of endocarditis: a systematic review. Open Forum Infect Dis 4(4):ofx261. Scholar
  137. 137.
    Bai AD, Agarwal A, Steinberg M et al (2017) Clinical predictors and clinical prediction rules to estimate initial patient risk for infective endocarditis in Staphylococcus aureus bacteremia: a systematic review and meta-analysis. Clin Microbiol Infect 23:900–906PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Palraj BR, Baddour LM, Hess EP, Steckelberg JM, Wilson WR, Lahr BD, Sohail MR (2015) Predicting risk of endocarditis using a clinical tool [PREDICT]: scoring system to guide use of echocardiography in the management of Staphylococcus aureus bacteremia. Clin Infect Dis 61:18–28PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Holland TL, Arnold C, Fowler VG Jr (2014) Clinical management of Staphylococcus aureus bacteremia. A review. JAMA 312:1330–1341PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Showler A, Burry L, Bai AD et al (2015) Use of transthoracic echocardiography of low-risk Staphylococcus aureus bacteremia. JACC Cardiovasc Imaging 8:924–931PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Jernigan JA, Farr BM (1993) Short-course therapy of catheter-related Staphylococcus aureus bacteremia: a meta-analysis. Ann Intern Med 119:304–311PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Chong YP, Moon SM, Bang KM et al (2013) Treatment duration for uncomplicated Staphylococcus aureus bacteremia to prevent relapse: analysis of a prospective observational cohort study. Antimicrob Agents Chemother 57:1150–1156PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Khatib R, Riederer K, Saeed S, Johnson LB, Fakih MG, Sharma M, Tabriz MS, Khosrovaneh A (2005) Time to positivity in Staphylococcus aureus: possible correlation with the source and outcome of infection. Clin Infect Dis 41:594–598PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Habib G, Badano L, Tribouilloy C, Vilacosta I, Zamorano JL (2010) Recommendations for the practice of echocardiography in infective endocarditis. Eur J Echocardiogr 11:202–219PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Benfield T, Thorlacius-Ussing L. Seven versus fourteen days of treatment in uncomplicated Staphylococcus aureus bacteremia [SAB7]. Clinical
  146. 146.
    Liu C, Strnad L, Beedkmann S, Polgreen PM, Chambers HF (2019) Clinical practice variation among adult infectious disease physicians in the management of Staphylococcus aureus bacteremia. Clin Infect Dis 69(3):530–533. Scholar
  147. 147.
    McDanel JS, Roghmann MC, Perenevich EN et al (2017) Comparative effe3ctiveness of cefazolin versus nafcillin or oxacillin for treatment of methicillin-susceptible Staphylococcus aureus infections complicated by bacteremia: A National Cohort Study. Clin Infect Dis 65:100–6PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Loubet P, Burdet C, Vindrios W et al (2018) Cefazolin versus anti-stphylococcal penicillins for treatment of methicillin-susceptible Staphylococcus aureus bacteremia: a narrative review. Clin Microbiol Infect 24:125–32PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Burdet C, Loubet P, Le Moing V et al (2018) Efficacy of cloxacillin versus cefazol;in for methicillin-susceptible Staphylococcus aureus bacteremia [CloCeBa]: study protocol for a randomized, controlled, non-inferiority trial. BMJ Open 8: e023151PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • I. W. Fong
    • 1
  1. 1.St. Michael’s HospitalUniversity of TorontoTorontoCanada

Personalised recommendations