Advertisement

Visual Evoked Potentials

  • Omkar N. Markand
Chapter
  • 18 Downloads

Abstract

This chapter discusses flash-induced visual evoked potentials (VEPs) and pattern-reversal visual evoked potentials (PRVEPs), their clinical utility, method of acquisition, and standard recording protocol. It describes the major components of flash VEP and PRVEP, their common morphologic variations, and influence of various subject-related and technical factors on these responses. Detail descriptions are provided of common PRVEP abnormalities and their interpretation and correlation with dysfunction at specific levels of visual pathways. Even though hemifield PRVEPs are less frequently performed clinically, they are adequately covered for those who may like to pursue them further. Major neurological and ophthalmological conditions associated with VEP abnormalities are also described with a detailed discussion on the abnormal patterns seen in multiple sclerosis, optic neuritis, and traumatic and anoxic coma. The methodology to differentiate between organic versus functional types of blindness is discussed. More than 30 figures and 10 tables illustrate various PRVEP and flash VEP characteristics and abnormalities. Six clinical cases are included at the end of this chapter and are discussed under the following headings: reason for study, technical summary, VEP findings, interpretation, and discussion. The chapter provides the referring physician a recommended method of writing VEP reports.

Keywords

Flash VEP Pattern-reversal VEP Hemifield visual responses Multiple sclerosis Optic neuritis “Psychogenic” blindness Case studies 

References

  1. Allison T, Wood CC, Goff WR. Brain stem auditory, pattern-reversal visual, and short-latency somatosensory evoked potentials: latencies in relation to age, sex, brain and body size. Electroencephalogr Clin Neurophysiol. 1983;55:619–36.PubMedCrossRefGoogle Scholar
  2. American Clinical Neurophysiology Society. Guideline 9B. Guidelines on visual evoked potentials. J Clin Neurophysiol. 2006;23:138–56.CrossRefGoogle Scholar
  3. Anderson D, Bundlie S, Rockswold G. Multimodality evoked potentials in closed head trauma. Arch Neurol. 1984;41:369–79.PubMedCrossRefGoogle Scholar
  4. Asselman P, Chadwick DW, Marsden CD. Visual evoked responses in the diagnosis and management of patients suspected of multiple sclerosis. Brain. 1975;98:261–82.PubMedCrossRefGoogle Scholar
  5. Bird TD, Griep E. Pattern reversal visual evoked potentials. Studies in Charcot-Marie-Tooth hereditary neuropathy. Arch Neurol. 1981;38:739–41.PubMedCrossRefGoogle Scholar
  6. Bynke H, Olsson JE, Rosen I. Diagnostic value of visual evoked responses, clinical eye examination and CSF analysis in chronic myelopathy. Acta Neurol Scand. 1977;56:55–69.PubMedCrossRefGoogle Scholar
  7. Cant B, Hume A, Shaw N. Effects of luminance on the pattern visual evoked potentials in multiple sclerosis. Electroencephalogr Clin Neurophysiol. 1978;45:496–504.PubMedCrossRefGoogle Scholar
  8. Carroll WM, Mastaglia FL. Leber’s optic neuropathy: a clinical and visual evoked potential study of affected and asymptomatic members of a six generation family. Brain. 1979;102:559–80.PubMedCrossRefGoogle Scholar
  9. Carroll WM, Kriss A, Baraitser M, et al. The incidence and nature of visual pathway involvement in Friedreich’s ataxia. A clinical and visual evoked potential study of 22 patients. Brain. 1980;103:413–34.PubMedCrossRefGoogle Scholar
  10. Chiappa KH. Pattern shift visual evoked potentials: methodology. In: Chiappa KH, editor. Evoked potentials in clinical medicine. 3rd ed. Lippincott-Raven: Philadelphia; 1997. p. 30–94.Google Scholar
  11. Cigánek L. The EEG response (evoked potential) to light stimulus in man. Electroencephalogr Clin Neurophysiol. 1961;13:163–72.Google Scholar
  12. Garg BP, Markand ON, DeMyer WE, et al. Evoked response studies in patients with adrenoleukodystrophy and heterozygous relatives. Arch Neurol. 1983;40:356–9.PubMedCrossRefGoogle Scholar
  13. Ghezzi A, Montanini R. Comparative study of visual evoked potentials in spinocerebellar ataxia and multiple sclerosis. Acta Neurol Scand. 1985;71:252–6.PubMedCrossRefGoogle Scholar
  14. Groswasser Z, Kriss A, Halliday AM, et al. Pattern and flash evoked potentials in the assessment and management of optic nerve gliomas. J Neurol Neurosurg Psychiatry. 1985;48:1125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Halliday AM. The visual evoked potential in healthy subjects. In: Halliday AM, editor. Evoked potentials in clinical testing. London: Churchill Livingstone; 1993. p. 57–113.Google Scholar
  16. Halliday AM, McDonald WI, Mushin J. Delayed visual evoked responses in optic neuritis. Lancet. 1972;1:982–5.PubMedCrossRefGoogle Scholar
  17. Halliday AM, Halliday E, Kriss A, et al. The pattern-reversal evoked potentials in compression of the anterior visual pathways. Brain. 1976;99:357–74.PubMedCrossRefGoogle Scholar
  18. Heimovic I, Pedley T. Hemi-field pattern reversal visual evoked potentials II. Lesions of the chiasm and posterior visual pathways. Electroencephalogr Clin Neurophysiol. 1982;54:121–31.CrossRefGoogle Scholar
  19. Hess CW, Meienberg O, Ludin HP. Visual evoked potentials in acute occipital blindness. Diagnostic and prognostic value. J Neurol. 1982;227:193–200.PubMedCrossRefGoogle Scholar
  20. Holder GE, Celesia GG, Miyake Y, et al. International Federation of Clinical Neurophysiology: recommendations for visual system testing. Clin Neurophysiol. 2010;121:1393–409.PubMedCrossRefGoogle Scholar
  21. Husain AM, Hayes S, Young M. Visual evoked potentials with CRT and LCD monitors: when newer is not better. Neurology. 2009;72:162–4.PubMedCrossRefGoogle Scholar
  22. Jabbari B, Maitland CG, Morris LM, et al. The value of visual evoked potentials as a screening test in neurofibromatosis. Arch Neurol. 1985;42:1072–8.PubMedCrossRefGoogle Scholar
  23. Jones DC, Blume WT. Aberrant wave forms to pattern reversal stimulation: clinical significance and electrophysiologic “solutions”. Electroencephalogr Clin Neurophysiol. 1985;61:472–81.PubMedCrossRefGoogle Scholar
  24. Kurita-Tashima S, Tobimatsu S, Nakayama-Hiromatsu M, et al. Effect of check size on the pattern reversal visual evoked potential. Electroencephalogr Clin Neurophysiol. 1991;80:161–6.PubMedCrossRefGoogle Scholar
  25. Markand O, DeMeyer W, Worth R, et al. Multimodality evoked responses in leukodystrophies. In: Courjon J, Mauguiere F, Revol M, editors. Clinical applications of evoked responses in neurology. New York: Raven Press; 1982. p. 409–15.Google Scholar
  26. Misra UK, Kalita J, Das A. Vitamin B12 deficiency neurological syndromes: a clinical, MRI and electrodiagnostic study. Electromyogr Clin Neurophysiol. 2003;43:57–64.PubMedGoogle Scholar
  27. Moskowitz A, Sokol S. Developmental changes in the human visual system as reflected by the latency of the pattern reversals VEP. Electroencephalogr Clin Neurophysiol. 1983;56:1–15.PubMedCrossRefGoogle Scholar
  28. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, et al. ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Opthalmol. 2016;133:1–9.CrossRefGoogle Scholar
  29. Puri V, Chaudhry N, Goel S, et al. Vitamin B 12 deficiency: a clinical and electrophysiological profile. Electromyogr Clin Neurophysiol. 2005;45:273–84.PubMedGoogle Scholar
  30. Ropper AH, Miett T, Chiappa KH. Absence of evoked potential abnormalities in acute transverse myelopathy. Neurology. 1982;32:80–2.PubMedCrossRefGoogle Scholar
  31. Rowe MJ. A sequential technique for half-field pattern visual evoked potential testing. Electroencephalogr Clin Neurophysiol. 1981;51:463–9.PubMedCrossRefGoogle Scholar
  32. Shahrokhi F, Chiappa KH, Young RR. Pattern shift visual evoked responses: two hundred patients with optic neuritis and/or multiple sclerosis. Arch Neurol. 1978;35:65–71.PubMedCrossRefGoogle Scholar
  33. Sherman J, Bass S, Noble K, et al. Visual evoked potentials (VEP) delays in central serous choroidopathy. Invest Ophthalmol Vis Sci. 1986;27:214–21.PubMedGoogle Scholar
  34. Sokol S, Hansen V, Moskowitz A, et al. Evoked potentials and preferential looking estimates of visual acuity in pediatric patients. Ophthalmology. 1983;90:552–62.PubMedCrossRefGoogle Scholar
  35. Sorensen PS, Trojaborg W, Gjerris F, et al. Visual evoked potentials in pseudotumor cerebri. Arch Neurol. 1985;42:150–3.PubMedCrossRefGoogle Scholar
  36. Spitz MC, Emerson RG, Pedley TA. Dissociation of frontal N100 from occipital P100 in pattern reversal visual evoked potentials. Electroencephalogr Clin Neurophysiol. 1986;65:161–8.PubMedCrossRefGoogle Scholar
  37. Taylor MJ, Menzies R, MacMillan LJ, et al. VEPs in normal full-term and preterm neonates: longitudinal versus cross-sectional data. Electroencephalogr Clin Neurophysiol. 1987;68:20–7.PubMedCrossRefGoogle Scholar
  38. Thompson PD, Mastaglia FL, Carroll WM. Anterior ischemic optic neuropathy. A correlative clinical and visual evoked potential study of 18 patients. J Neurol Neurosurg Psychiatry. 1986;49:128–35.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Thompson DA, Fritsch DM, Hardy SE, et al. The changing shape of the ISCEV standard pattern onset VEP. Doc Ophthalmol. 2017;135:69–76.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Tobimatsu S, Fukui R, Kato M, et al. Multimodality evoked potentials in patients and carriers with adrenoleukodystrophy and adrenomyeloneuropathy. Electroencephalogr Clin Neurophysiol. 1985;62:18–24.PubMedCrossRefGoogle Scholar
  41. Towle VL, Moskowitz A, Sokol S, et al. The visual evoked potential in glaucoma and ocular hypertension: effects of check size, field size, and stimulation rate. Invest Ophthalmol Vis Sci. 1983;24:175–83.PubMedGoogle Scholar
  42. Wilcox LM Jr, Sokol S. Changes in the binocular fixation patterns and the visual evoked potential in the treatment of esotropia with amblyopia. Ophthalmology. 1980;87:1273–81.PubMedCrossRefGoogle Scholar
  43. Wilson WB. Visual evoked response differentiation of ischemic optic neuritis from the optic neuritis of multiple sclerosis. Am J Ophthalmol. 1978;86:530–5.PubMedCrossRefGoogle Scholar
  44. Yiannikas C, Walsh JC. The variation of the pattern shift visual evoked response with the size of the stimulus field. Electroencephalogr Clin Neurophysiol. 1983;55:427–35.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Omkar N. Markand
    • 1
  1. 1.Professor Emeritus of Neurology, Department of NeurologyIndiana University School of MedicineIndianapolisUSA

Personalised recommendations