Advertisement

Dendroecology of Prosopis Species in the World: Secular Traces of Natural and Anthropic Events and Their Effects on Prosopis Growth

  • Maria Laura Cangiano
  • Maria Alicia Cendoya
  • Lucía Verónica Risio-Allione
  • Stella Marys Bogino
Chapter
  • 33 Downloads

Abstract

Prosopis genus comprises 44 species which grow in arid and semiarid environments of America, Asia and Africa and in Oceania as introduced species. Of those 44 species, 30 grow in America. Argentina is supposed to be the origin center of the genus Prosopis, and that could explain the fact that this country has the highest species variability. Prosopis species are of great ecological and social value providing goods such as firewood, food, feed for livestock and medicines as well as services acting as watershed stabilizers and nitrogen and carbon sequesters. In this chapter, we address the new insights that dendrochronological studies have provided about Prosopis genus worldwide with main emphasis in Latin America. Many studies provide information about growth dynamics which are later on applied to develop management plans, to quantify the increment in dead and alive biomass throughout time or to estimate growth changes linked to social and political events. Rainfall is the main growth driver of Prosopis throughout the Andes from Peru to central Argentina, whereas in the flat Pampas temperature is the main tree-ring width driver. Climate variables are hard to separate from other factors affecting growth such as geomorphology, anthropogenic impact and groundwater depth. Outside of Latin America, dendrochronology of Prosopis has been used for the analysis of anthropogenic contamination. Fire, the main disturbance factor in arid and semiarid environments, showed a regional dynamic as a result of human activities. Most dendroecological studies on Prosopis species, which allowed determining these species dynamics, concluded that Prosopis do not present an encroaching behavior. This review demonstrates the avant-garde and influential value of Prosopis genus for dendroecological research as it allows reconstructing past disturbances as fire, anthropogenic impact and changes in groundwater depth for the last 50–100 years and up to 356 years in the case of Prosopis caldenia Burkart in the Pampean Region.

Keywords

Radial growth Climate Fire Semiarid Arid 

Notes

Acknowledgments

This chapter could not be possible without the encomiastic contribution of all researches interested on Prosopis genus whose publications contribute to this review. We also thank the two anonymous referees for improving the quality of the manuscript.

References

  1. Álvarez JA, Villagra PE, Villalba R et al (2011a) Wood productivity of Prosopis flexuosa D.C. woodlands in the Central Monte: influence of population structure and tree-growth habit. J Arid Environ 75:7–13.  https://doi.org/10.1016/j.jaridenv.2010.09.003CrossRefGoogle Scholar
  2. Álvarez JA, Villagra PE, Villalba R (2011b) Factors controlling deadwood availability and branch decay in two Prosopis woodlands in the Central Monte, Argentina. For Ecol Manag 262:637–645.  https://doi.org/10.1016/j.foreco.2011.04.032CrossRefGoogle Scholar
  3. Archer S (1995) Tree-grass dynamics in a Prosopis-thornscrub savanna parkland: reconstructing the past and predicting the future. Écoscience 2:83–99.  https://doi.org/10.1080/11956860.1995.11682272CrossRefGoogle Scholar
  4. Beramendi-Orosco LE, Rodríguez-Estrada ML, Morton-Bermea O et al (2013) Correlations between metals in tree-rings of Prosopis julifora as indicators of sources of heavy metal contamination. Appl Geochem 39:78–84.  https://doi.org/10.1016/j.apgeochem.2013.10.003CrossRefGoogle Scholar
  5. Bogino S, Jobbágy E (2011) Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the pampas (Argentina). For Ecol Manag 262:1766–1774.  https://doi.org/10.1016/j.foreco.2011.07.032CrossRefGoogle Scholar
  6. Bogino S, Villalba R (2008) Radial growth and biological rotation age of Prosopis caldenia Burkart in Central Argentina. J Arid Environ 72:16–23.  https://doi.org/10.1016/j.jaridenv.2007.04.008CrossRefGoogle Scholar
  7. Bogino S, Roa GC, Velasco-Sastre A et al (2015) Synergistic effects of fire, grazing, climate, and management history on Prosopis caldenia recruitment in the Argentinean pampas. J Arid Environ 117:59–66.  https://doi.org/10.1016/j.jaridenv.2015.02.014CrossRefGoogle Scholar
  8. Bogino S, Cangiano ML, Dussart E et al (2019) Dendrochronological studies of indigenous and creole archeological remains in the Argentinean pampas (19th and 20th centuries). Dendrochronologia 55:25–32.  https://doi.org/10.1016/j.dendro.2019.03.005CrossRefGoogle Scholar
  9. Bovey R (2016) Mesquite: history, growth, biology, uses and management. Texas A&M University Press, College StationGoogle Scholar
  10. Bravo S, Kunst C, Grau R (2008) Suitability of the native woody species of the Chaco region, Argentina, for use in dendroecological studies of fire regimes. Dendrochronologia 26:43–52.  https://doi.org/10.1016/j.dendro.2007.05.004CrossRefGoogle Scholar
  11. Buffington LC, Herbel CH (1965) Vegetation changes on a Semidesert grassland range from 1858 to 1963. Ecol Monogr 35:139–164.  https://doi.org/10.2307/1948415CrossRefGoogle Scholar
  12. Burkart A (1976) A monograph of the genus Prosopis. J Arnold Arbor 57(4):450–525Google Scholar
  13. Carvalho NJF, Alves PM, Vieira AJR et al (2019) The hydrological performance of Prosopis juliflora (Sw.) growth as an invasive alien tree species in the semiarid tropics of northeastern Brazil. Biol Invasions 21:2561.  https://doi.org/10.1007/s10530-019-01994-yCrossRefGoogle Scholar
  14. Contreras S, Santoni C, Jobbágy EG (2012) Abrupt watercourse formation in a semiarid sedimentary landscape of Central Argentina: the roles of forest clearing, rainfall variability and seismic activities. Ecohydrology 6:794–805.  https://doi.org/10.1002/eco.1302CrossRefGoogle Scholar
  15. Cozzarín GI (2008) Actividad apícola en el caldenal. In: Gabutti E, MJL P, Barbosa OA (eds) El Caldenal Puntano. Caracterización ecológica y utilización sustentable. Editorial El tabaquillo, Villa Mercedes, pp 63–66Google Scholar
  16. Darwin C (1839) Narrative of the surveying voyages of His Majesty’s ships Adventure and Beagle, between the years 1826 and 1836, describing their examination of the southern shores of South America, and the Beagle’s circumnavigation of the globe, vol III & appendix, 1st edn. Henry Colburn, LondonGoogle Scholar
  17. Decuyper M, Chavez RO, Copini P et al (2016) A multi-scale approach to assess the effect of groundwater extraction on Prosopis tamarugo in the Atacama Desert. J Arid Environ 131:25–34.  https://doi.org/10.1016/j.jaridenv.2016.03.014CrossRefGoogle Scholar
  18. Dussart E, Lerner P, Peinetti R (1998) Long-term dynamics of two populations of Prosopis caldenia Burkart. J Range Manag 51:685–691CrossRefGoogle Scholar
  19. Dussart EG, Chirino CC, Morici E et al (2011) Reconstrucción del paisaje del caldenal pampeano en los últimos 250 años. Quebracho 19(1–2):54–65Google Scholar
  20. Ferrero ME, Coirini RO, Díaz MP (2013) The effect of wood-boring beetles on the radial growth of Prosopis flexuosa DC. in the arid Chaco of Argentina. J Arid Environ 88:141–146.  https://doi.org/10.1016/j.jaridenv.2012.07.004CrossRefGoogle Scholar
  21. Flinn RC, Archer S, Boutton TW et al (1994) Identification of annual rings in an arid-land woody plant, Prosopis Glandulosa. Ecology 75:850–853.  https://doi.org/10.2307/1941741CrossRefGoogle Scholar
  22. Ghezzi I, Rodríguez R (2015) Primera serie dendroarqueológica en los Andes Centrales: resultados preliminares de Chankillo, Casma. Bulletin ‘Institut français d’études andines 44:1–21.  https://doi.org/10.4000/bifea.7465CrossRefGoogle Scholar
  23. Giantomasi MA, Roig-Juñent FA, Villagra PE et al (2009) Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23:117–126.  https://doi.org/10.1007/s00468-008-0260-5CrossRefGoogle Scholar
  24. Giantomasi MA, Roig-Juñent FA, Villagra PE (2013) Use of differential water sources by Prosopis flexuosa DC: a dendroecological study. Plant Ecol 214:11–27.  https://doi.org/10.1007/s11258-012-0141-2CrossRefGoogle Scholar
  25. Giménez AM, Ríos N, Moglia G (1997) Leño y corteza de itín Prosopis kuntzei (Harms) en relación a algunas magnitudes dendrométricas. Invest Agr Sist Recur For 6(1–2):163–182Google Scholar
  26. Giménez AM, Ríos NA, Moglia JG (2003) Crecimiento de Prosopis nigra (Griseb.) Hieron (algarrobo negro) en Santiago del Estero, Argentina. Foresta Veracruzana 5(2):17–22Google Scholar
  27. Giménez AM, Ríos N, Hernández P et al (2009) Influencia de la edad en el crecimiento de vinal (Prosopis ruscifolia Burkart.), en la Provincia de Santiago del Estero, Argentina. Madera Bosques 15(2):45–57CrossRefGoogle Scholar
  28. Giménez AM, Ríos N, Moglia G et al (2010) Determinación de la edad del árbol histórico de la casa de Facundo Quiroga en los Llanos de La Rioja. Quebracho 18(1–2):71–78Google Scholar
  29. Giordano CV, Guevara A, Boccalandro HE et al (2011) Water status, drought responses, and growth of Prosopis flexuosa trees with different access to the water table in a warm South American desert. Plant Ecol 212:1123–1134.  https://doi.org/10.1007/s11258-010-9892-9CrossRefGoogle Scholar
  30. Golubov J, Mandujano M, Eguiarte L (2001) The paradox of mesquites (Prosopis spp.): invading species or biodiversity enhancers? B Soc Bot Mex 69:23–30.  https://doi.org/10.17129/botsci.1644CrossRefGoogle Scholar
  31. Holmgren M, López BC, Gutierrez JR et al (2006) Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America. Glob Change Biol 12(12):2263–2271.  https://doi.org/10.1111/j.1365-2486.2006.01261.xCrossRefGoogle Scholar
  32. Juárez de Galíndez M, Giménez AM, Ríos N et al (2005) Modelación de crecimiento en Prosopis alba Griseb. empleando dos modelos biológicos. Quebracho 12:34–42Google Scholar
  33. Juárez de Galíndez M, Giménez AM, Ríos N et al (2007) Modelación del crecimiento en diámetro de vinal (Prosopis ruscifolia), en Santiago del Estero, Argentina. Foresta Veracruzana 9(2):9–15Google Scholar
  34. Juárez de Galíndez M, Giménez AM, Ríos N et al (2008) Determinación de la edad de aprovechamiento de individuos de Prosopis alba mediante un modelo logístico de intercepto aleatorio para incrementos radiales. Ciencia e Investigación Forestal Instituto Forestal Chile 14(2):287–299Google Scholar
  35. Judd BI, Laughlin JM, Guenther HR et al (1971) The lethal decline of mesquite on the Casa Grande National Monument. Great Basin Naturalist 31(3):153–159Google Scholar
  36. Korori SAA, Shirvany A, Mashaei EM et al (2013) Tree utilization as an indicator to evaluate the degradation of Iran’s ecosystems in Persian Gulf War. Casp J Appl Sci Res 2(9):85–94Google Scholar
  37. Krebs C, Fischer G (1931) El pluviómetro secular. In: Circular de la Sección de Propaganda e Informes del Ministerio de Agricultura, República Argentina, vol 847, pp 1–24Google Scholar
  38. Leavitt SW, Long A (1991) Seasonal stable-carbon isotope variability in tree rings: possible paleoenvironmental signals. Chem Geol (Isot Geosci Sect) 87:59–70.  https://doi.org/10.1016/0168-9622(91)90033-sCrossRefGoogle Scholar
  39. López BC, Sabaté S, Gracia CA et al (2005) Wood anatomy, description of annual rings, and responses to ENSO events of Prosopis pallida H.B.K., a wide-spread woody plant of arid and semi-arid lands of Latin America. J Arid Environ 61:541–554.  https://doi.org/10.1016/j.jaridenv.2004.10.008CrossRefGoogle Scholar
  40. López BC, Rodríguez R, Gracia CA et al (2006) Climatic signals in growth and its relation to ENSO events of two Prosopis species following a latitudinal gradient in South America. Glob Change Biol 12(5):897–906.  https://doi.org/10.1111/j.1365-2486.2006.01138.xCrossRefGoogle Scholar
  41. Medina A (2007) Reconstrucción de los regímenes de fuego en un bosque de Prosopis caldenia, Provincia de la Pampa, Argentina. Bosque 28(3):234–240.  https://doi.org/10.4067/s0717-92002007000300008CrossRefGoogle Scholar
  42. Medina A (2008) Cicatrices de fuego en el leño de Prosopis caldenia en Luán Toro, provincia de La Pampa. Bosque 29(2):115–119.  https://doi.org/10.4067/s0717-92002008000200003CrossRefGoogle Scholar
  43. Medina A, Dussart E, Esterich D et al (2000) Reconstrucción de la historia del fuego en un bosque de Prosopis caldenia (Burk.) de Arizona, sur de la provincia de San Luis. Multequina 9:91–98Google Scholar
  44. Morales MS, Villalba R (2012) Influence of precipitation pulses on long-term Prosopis ferox dynamics in the Argentinean intermontane subtropics. Oecologia 168:381–392.  https://doi.org/10.1007/s00442-011-2087-9CrossRefPubMedGoogle Scholar
  45. Morales MS, Villalba R, Grau HR et al (2001) Potencialidad de Prosopis ferox Griseb (Leguminosae, subfamilia: Mimosoideae) para estudios dendrocronológicos en desiertos subtropicales de alta montaña. Rev Chil Hist Nat 74:865–872.  https://doi.org/10.4067/S0716-078X2001000400013CrossRefGoogle Scholar
  46. Morales MS, Villalba R, Grau HR et al (2004) Rainfall-controlled tree growth in high-elevation subtropical treelines. Ecology 85:3080–3089.  https://doi.org/10.1890/04-0139CrossRefGoogle Scholar
  47. Morales MS, Villalba R, Boninsegna JA (2005) Climate, land-use and Prosopis ferox recruitment in the Quebrada de Humahuaca, Jujuy, Argentina. Dendrochronologia 22:169–174.  https://doi.org/10.1016/j.dendro.2005.05.004CrossRefGoogle Scholar
  48. Pasiecznik NM, Felker P, Harris PJC et al (2001) The Prosopis juliflora-Prosopis pallida complex: a monograph. HDRA, CoventryGoogle Scholar
  49. Perpiñal E, Balzarini M, Catalán L et al (1995) Edad de culminación del crecimiento en Prosopis flexuosa D.C. en el chaco árido argentino. Invest Agr Sist Recur For 4(1):45–55Google Scholar
  50. Piraino S, Roig JFA (2016) Assessing the sensitivity of riparian algarrobo dulce (Prosopis flexuosa dc) radial growth to hydrological changes. Geochronometria 43:1–8.  https://doi.org/10.1515/geochr-2015-0027CrossRefGoogle Scholar
  51. Piraino S, Roig JFA (2017) Diferencias en el hábito de crecimiento como variable explicativa de la influencia climática en Prosopis flexuosa en el Desierto del Monte Central (Argentina). Bol Soc Argent Bot 52(3):523–533CrossRefGoogle Scholar
  52. Piraino S, Abraham EM, Diblasi A et al (2015) Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands. Trees 29:903–916.  https://doi.org/10.1007/s00468-015-1173-8CrossRefGoogle Scholar
  53. Piraino S, Abraham EM, Hadad MA et al (2017) Anthropogenic disturbance impact on the stem growth of Prosopis flexuosa DC forests in the Monte desert of Argentina: a dendroecological approach. Dendrochronologia 42:63–72.  https://doi.org/10.1016/j.dendro.2017.01.001CrossRefGoogle Scholar
  54. Polley HW, Johnson HB, Mayeux HS (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976–988.  https://doi.org/10.2307/1939421CrossRefGoogle Scholar
  55. R Core Team R, Carey VJ, Deb Roy S, Eglen S, Guha R, Lewin-Koh N, Myatt M, Ptaff B, Warmerdam F, Weigand S (2016) R: a language and environment for statistical computing. Free Software Foundation, Inc. Available at: http://www.R-project.org
  56. Rajput KS, Rao KS, Kim YS (2008) Cambial activity and wood anatomy in Prosopis spicigera (Mimosaceae) affected by combined air pollutants. IAWA J 29(2):209–219.  https://doi.org/10.1163/22941932-90000180CrossRefGoogle Scholar
  57. Ríos NA, Giménez AM, Moglia JG (2001) Crecimiento del itín (Prosopis kuntzei Harms) en la región chaqueña argentina. Madera Bosques 7(1):47–56.  https://doi.org/10.21829/myb.2001.711318CrossRefGoogle Scholar
  58. Risio L, Bogino S, Bravo F (2014) Aboveground and belowground biomass allocation in native Prosopis caldenia Burkart woodlands in the semi-arid Argentinean pampas. Biomass Bioenergy 66:249–260.  https://doi.org/10.1016/j.biombioe.2014.03.038CrossRefGoogle Scholar
  59. Risio L, Lara HW, Bogino S et al (2018) Aridity variations in the semiarid Argentinean Pampas: How they affect Prosopis caldenia growth at the edge of the world distribution area. Dendrochronologia 50:126.  https://doi.org/10.1016/j.dendro.2018.05.003CrossRefGoogle Scholar
  60. Rivera M, Moya J, Shea D (2010) Dendrocronología en la Pampa del Tamarugal, Desierto de Atacama, Norte de Chile. Diálogo Andino 36:33–50Google Scholar
  61. Rodríguez R, Mabres A, Luckman B et al (2005) “El Niño” events recorded in dry-forest species of the lowlands of northwest Peru. Dendrochronologia 22:181–186.  https://doi.org/10.1016/j.dendro.2005.05.002CrossRefGoogle Scholar
  62. Rogers KE (2000) The magnificent mesquite. University of Texas Press, AustinGoogle Scholar
  63. Salazar PC, Navarro-Cerrillo RM, Ancajima E et al (2018) Effect of climate and ENSO events on Prosopis pallida forests along a climatic gradient. Forestry: Int J Forest Res 91(5):552–562.  https://doi.org/10.1093/forestry/cpy014CrossRefGoogle Scholar
  64. Shackleton RT, Le Maitre DC, Pasiecznik NM et al (2014) Prosopis: a global assessment of the biogeography, benefits, impacts and management of one of the world’s worst woody invasive plant taxa. AoB Plants 6:plu027. doi: https://doi.org/10.1093/aobpla/plu027
  65. Smeins FE (1983) Origin of the brush problem: a geological and ecological perspective of contemporary distribution. In: McDaniel KC (ed) Proceeding of the brush management symposium. Society for Range Management, Albuquerque, pp 5–16Google Scholar
  66. Tapia A, Dussart E (2013) Aportes de la dendrocronología al estudio de la evolución del caldenar pampeano durante la ocupación ranquelina. Revista del Mus de La Plata (Nueva Serie). Sección Antropología 13(87):361–374Google Scholar
  67. Tarhule A, Hughes MK (2002) Tree-ring research in semiarid West Africa: need and potential. Tree-Ring Res 58:31–46Google Scholar
  68. Tello DS, de Prada J, Cristeche ER (2018) Valoración económica del bosque de caldén (Prosopis caldenia Burkart) en el sur de Córdoba, Argentina. Rev Chapingo Ser Cie 24(3):297–312.  https://doi.org/10.5154/r.rchscfa.2017.03.027CrossRefGoogle Scholar
  69. Velasco-Sastre T, Vergarechea M, Tapia A et al (2018) Growth dynamics and disturbances along the last four centuries in the Prosopis caldenia woodlands of the Argentinean pampas. Dendrochronologia 47:58–66.  https://doi.org/10.1016/j.dendro.2017.12.005CrossRefGoogle Scholar
  70. Viglizzo EF, Frank FC (2006) Ecological interactions, feedbacks, thresholds and collapses in the Argentine pampas in response to climate and farming during the last century. Quat Intl 158:122–126.  https://doi.org/10.1016/j.quaint.2006.05.022CrossRefGoogle Scholar
  71. Villagra PE, Villalba R, Boninsegna JA (2005a) Structure and growth rate of Prosopis flexuosa woodlands in two contrasting environments of the Central Monte desert. J Arid Environ 60:187–199.  https://doi.org/10.1016/j.jaridenv.2004.03.016CrossRefGoogle Scholar
  72. Villagra PE, Boninsegna JA, Alvarez JA et al (2005b) Dendroecology of Prosopis flexuosa woodlands in the Monte desert: implications for their management. Dendrochronologia 22:209–213.  https://doi.org/10.1016/j.dendro.2005.05.005CrossRefGoogle Scholar
  73. Villalba R, Boninsegna JA (1989) Dendrochronological studies on Prosopis flexuosa DC. IAWA Bull 10:155–160.  https://doi.org/10.1163/22941932-90000483CrossRefGoogle Scholar
  74. Villalba R, Villagra PE, Boninsegna JA et al (2000) Dendroecología y dendroclimatología con especies del género Prosopis en argentina. Multequina 9(2):1–18Google Scholar
  75. Virginia RA, Jarrell WM (1983) Soil properties in a mesquite-dominated Sonoran Desert ecosystem. Soil Sci Soc Am J 47:138–144.  https://doi.org/10.2136/sssaj1983.03615995004700010028xCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Maria Laura Cangiano
    • 1
  • Maria Alicia Cendoya
    • 2
  • Lucía Verónica Risio-Allione
    • 3
  • Stella Marys Bogino
    • 3
  1. 1.Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighUSA
  2. 2.Agricultural Experimental Station, The National Agricultural Technology Institute of San LuisVilla MercedesArgentina
  3. 3.Department of Agricultural SciencesNational University of San LuisVilla MercedesArgentina

Personalised recommendations