Advertisement

Dendrochronological Potential of Trees from America’s Rainiest Region

  • Jorge A. GiraldoEmail author
  • Jorge I. del Valle
  • Carlos A. Sierra
  • Omar Melo
Chapter

Abstract

Hydric seasonality, dry or flooding periods, has been the explanation given by dendrochronologists for the formation of growth rings in tropical trees. However, under tropical hyper-humid conditions, there are species with growth periodicity and, therefore, with visible growth rings useful for dendrochronology. We classify, for the first time, the anatomical structures of the growth rings of the tropical trees from the Biogeographic Chocó Region. An annual rainfall >7200 mm without hydric seasonality characterizes the studied forest. We classify the tree rings as present (well or poorly defined) or absent. We also took into account the feasibility of tree-ring dating (dendrochronological potential). We characterized 81 species of trees belonging to 38 families. About 82% of species had growth rings, 46% well defined, and 36% poorly defined, and 18% with absent rings. Dendrochronological potential was high (14%), medium (25%), low (43%), and null (18%). We contrast our results with vast literature around tropics. Our results suggest that still without any hydric seasonality, many tropical tree species develop growth rings. Our findings drive to new questions: What is the periodicity of tree rings in these non-seasonal hyper-humid environments? What other subtle seasonality could be involved in the growth periodicity of these species, or are they genetic?

Keywords

Tree rings Non-seasonal rainfall Biogeographic Chocó Region Colombia 

Notes

Acknowledgments

This chapter was supported by project 4083 from the National University of Colombia, COLCIENCIAS with Project 1118-714-51372 and Max Planck Institute for Biogeochemistry. We acknowledge “Tropical Dendroecology Laboratory” of the Department of Forest Sciences of the National University of Colombia and MEDEL Herbarium. We thank “Pedro Antonio Pineda Tropical Forestry Center” of the University of Tolima and those people who help us during sampling: Amalia Forero, Faber Hernández, Sixto Cáseres, Andrés Caro, Diego Andrés David, and Jorge Mario Velez. Finally, we would like to thank Thomas A. Gavin, Professor Emeritus, Cornell University, for the help with editing this paper.

References

  1. Abdul-Azim AA, Okada N (2014) Occurrence and anatomical features of growth rings in tropical rainforest trees in Peninsular Malaysia: a preliminary study. Tropics 23:15–31.  https://doi.org/10.3759/tropics.23.15CrossRefGoogle Scholar
  2. Aguilar-Rodríguez S, Barajas-Morales J (2005) Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bot Sci 77:51–58.  https://doi.org/10.17129/botsci.1712CrossRefGoogle Scholar
  3. Álvarez E, Cayuela L, González-Caro S et al (2017) Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PLoS One 12:1–16.  https://doi.org/10.1371/journal.pone.0171072CrossRefGoogle Scholar
  4. Alves ES, Angyalossy-Alfonso V (2000) Ecological trends in the wood anatomy of some Brazilian species. 1. Growth rings and vessels. IAWA J 21:3–30.  https://doi.org/10.1078/0367-2530-0058CrossRefGoogle Scholar
  5. Alvim P (1964) Tree growth periodicity in tropical climates. In: The formation of wood in forest trees. Academic Press, New York, pp 479–495CrossRefGoogle Scholar
  6. Anchukaitis KJ, Evans MN, Wheelwright NT et al (2008) Stable isotope chronology and climate signal calibration in neotropical montane cloud forest trees. J Geophys Res Biogeosci 113:1–17.  https://doi.org/10.1029/2007JG000613CrossRefGoogle Scholar
  7. Araya MÁ (2012) Manual para la identificación de maderas a nivel macroscópico de 110 especies maderables del caribe norte de Costa Rica. Instituto Tecnológico de Costa Rica, CartagoGoogle Scholar
  8. Arévalo R, Londoño A (2005) Manual para la identificación de maderas que se comercializan en el departamento del Tolima. Corporación Autónoma Regional del Tolima (Cortolima), Ibagué, TolimaGoogle Scholar
  9. Bagnouls B, Gaussen H (1957) Les climats biologiques et leur classification. Ann Georgr 355:19–220Google Scholar
  10. Baguinon NT, Borgaonkar H, Gunatilleke N et al (2008) Collaborative studies in tropical Asian dendrochronology: Addressing challenges in climatology and forest ecology. Asia-Pacific Network for Global Change Research-APN-Final Report submitted to APN. Project: ARCP 2008-03CMY-BaguinonGoogle Scholar
  11. Baker JCA, Santos GM, Gloor M et al (2017) Does Cedrela always form annual rings? Testing ring periodicity across South America using radiocarbon dating. Trees 31:1999–2009.  https://doi.org/10.1007/s00468-017-1604-9CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barbosa A, Pereira G, Granato-Souza G et al (2018) Tree rings and growth trajectories of tree species from seasonally dry tropical forest. Aust J Bot 66:414–427.  https://doi.org/10.1071/BT17212CrossRefGoogle Scholar
  13. Barthélémy D, Blaise F, Fourcaud T et al (1995) Modelisation et simulation de l’architecture des arbres bilan et perspectives. Rev For Française 47:71–96.  https://doi.org/10.4267/2042/26721CrossRefGoogle Scholar
  14. Beech E, Rivers M, Oldfield S, Smith PP (2017) GlobalTreeSearch: the first complete global database of tree species and country distributions. J Sustain For 36:454–489.  https://doi.org/10.1080/10549811.2017.1310049CrossRefGoogle Scholar
  15. Beltran L, Valencia G (2013) Anatomía de anillos de crecimiento de 80 especies arbóreas potenciales para estudios dendrocronológicos en la Selva Central, Perú. Rev Biol Trop 61:1025–1037Google Scholar
  16. Boninsegna JA, Villalba R, Amarilla L et al (1989) Studies on tree rings, growth rates and age-size relationships of tropical tree species in Misiones, Argentina. IAWA J 10:161–169.  https://doi.org/10.1163/22941932-90000484CrossRefGoogle Scholar
  17. Borchert R (1999) Climatic periodicity, phenology, and cambium activity in tropical dry forest trees. IAWA J 20:239–247CrossRefGoogle Scholar
  18. Bräuning A, Volland-Voigt F, Burchardt I et al (2009) Climatic control of radial growth of Cedrela montana in a humid mountain rainforest in southern Ecuador. Erdkunde 63:337–345.  https://doi.org/10.3112/erdkunde.2009.04.04CrossRefGoogle Scholar
  19. Breitsprecher A, Bethel J (1990) Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71:1156–1164CrossRefGoogle Scholar
  20. Brienen R, Lebrija-trejos E, Van BM et al (2009) The potential of tree rings for the study of forest succession in Southern Mexico. Biotropica 41:186–195.  https://doi.org/10.1111/j.1744-7429.2008.00462.xCrossRefGoogle Scholar
  21. Brienen R, Schöngart J, Zuidema P (2016) Tree rings in the tropics: insights into the ecology and climate sensitivity of tropical trees. In: Goldstein G, Santiago SL (eds) Tropical tree physiology. Springer, Switzerland, pp 441–461Google Scholar
  22. Brienen R, Zuidema PA (2005) Relating tree growth to rainfall in Bolivian rain forests: a test for six species using tree ring analysis. Oecologia 146:1–12.  https://doi.org/10.1007/s00442-005-0160-yCrossRefPubMedPubMedCentralGoogle Scholar
  23. Bullock SH (1997) Effects of seasonal rainfall on radial growth in two tropical tree species. Int J Biometeorol 41:13–16.  https://doi.org/10.1007/s004840050047CrossRefGoogle Scholar
  24. Callado CH, Silva NSJS, Scarano FR et al (2001) Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees - Struct Funct 15:492–497.  https://doi.org/10.1007/s00468-001-0128-4CrossRefGoogle Scholar
  25. Campos LE, Lobão MS, Rosero-Alvarado J et al (2008) Potencialidad de especies forestales para dendrocronología a traves de la caracterización anatómica de los anillos de crecimiento en la Amazonía Peruana – Brasilera. In: VII Congreso Nacional de Estudiantes Forestales, Madre de Dios, PerúGoogle Scholar
  26. Carlquist S (2001) Comparative wood anatomy: systematic, ecological, and evolutionary aspects of dicotyledon wood. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  27. Chowdhury MQ, Kitin P, De Ridder M et al (2016) Cambial dormancy induced growth rings in Heritiera fomes Buch.- Ham.: a proxy for exploring the dynamics of Sundarbans, Bangladesh. Trees - Struct Funct 30:227–239.  https://doi.org/10.1007/s00468-015-1292-2CrossRefGoogle Scholar
  28. Cintra BBL, Schietti J, Emillio T et al (2013) Productivity of aboveground coarse wood biomass and stand age related to soil hydrology of Amazonian forests in the Purus-Madeira interfluvial area. Biogeosci Discuss 10:6417–6459.  https://doi.org/10.5194/bgd-10-6417-2013CrossRefGoogle Scholar
  29. Clark DA, Clark DB (1994) Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J Ecol 82:865–872CrossRefGoogle Scholar
  30. D’Arrigo R, Davi N, Jacoby G et al (2014) Dendroclimatic studies: Tree growth and climate change in Northern forests. American Geophysical Union - Wiley, HobokenCrossRefGoogle Scholar
  31. de Arruda EC, Paixão E, Nunes da Cunha C et al (2017) Methodological baseline for dendrochronological studies in the Pantanal. In: Soares M, Gonçalves M (eds) Natural resources in wetlands: from Pantanal to Amazonia. Museu Paraense Emílio Goeldi, Belem, pp 90–114Google Scholar
  32. de Faÿ E (1992) Vegetative development, primary and secondary growth of the shoot system of young Terminalia superba tropical trees, in a natural environment. I. Spatial variation in structure and size of axes. Ann des Sci For 49:389–402CrossRefGoogle Scholar
  33. De Reffye P, Heuvelink E, Barthélémy D, Paul-Henry C (2008) Plant growth models. In: Jorgensen SE, Fath B (eds) Encyclopedia of ecology. Elsevier, Amsterdam, pp 2824–2837CrossRefGoogle Scholar
  34. Détienne P (1995) Nature et périodicité des cernes dans quelques bois Guyanais. Bois Forêts des Trop 243:65–75Google Scholar
  35. Détienne P, Barbier C (1988) Rythmes de croissance de quelques essences de Guyane française. Bois forêts des Trop 217:63–76Google Scholar
  36. Enquist BJ, Leffler J (2001) Long-term tree ring chronologies from sympatric tropical dry-forest trees: individualistic responses to climatic variation. J Trop Ecol 17:4160.  https://doi.org/10.1017/S0266467401001031CrossRefGoogle Scholar
  37. Evans MN, Schrag DP (2004) A stable isotope-based approach to tropical dendroclimatology. Geochim Cosmochim Acta 68:3295–3305.  https://doi.org/10.1016/j.gca.2004.01.006CrossRefGoogle Scholar
  38. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development. Wiley, HobokenCrossRefGoogle Scholar
  39. Faber-Langendoen D, Gentry AH (1991) The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica 23:2–11CrossRefGoogle Scholar
  40. Fahn A (1967) Plant anatomy. Pergamon Press, OxfordGoogle Scholar
  41. Fahn A, Burley J, Longman K et al (1981) Wood anatomy: possible contribution of wood anatomy to the determination of the age of tropical trees. In: Borman H, Berlyn G (eds) Age and growth rate of tropical trees: new directions for research. Yale University, New Haven, pp 31–55Google Scholar
  42. Falcon-Lang H (1999) The early carboniferous (Courceyan –Arundian) monsoonal climate of the British Isles : evidence from growth rings in fossil woods. Geol Mag 136:1999.  https://doi.org/10.1017/S0016756899002307CrossRefGoogle Scholar
  43. Fichtler E, Clark D, Worbes M (2003) Age and long-term growth of trees in an old-growth tropical rain forest, based on analyses of tree rings and 14C. Biotropica 35:306–317.  https://doi.org/10.1646/03027CrossRefGoogle Scholar
  44. Frankie G, Baker H, Oppler P (1974) Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J Ecol 62:881–919CrossRefGoogle Scholar
  45. Fujii T, Salang A, Fujiwara T (1999) Growth periodicity in relation to the xylem development in three Shorea sp. (Dipterocarpaceae) growing in Sarawak. In: Wimmer R, Vetter R (eds) Tree ring analysis: biological, methodological, and environmental aspects. CABI Publishing, Oxon, pp 169–183Google Scholar
  46. Gentry AH (1982) Patterns of neotropical plant species diversity. In: Evolutionary biology. Plenum Press, New York, pp 1–84Google Scholar
  47. Graham EA, Mulkey SS, Kitajima K et al (2003) Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci USA 100:572–576.  https://doi.org/10.1073/pnas.0133045100CrossRefPubMedGoogle Scholar
  48. Granato-Souza D, Carolina A, Campos M et al (2019) Drivers of growth variability of Hymenaea stigonocarpa, a widely distributed tree species in the Brazilian Cerrado. Dendrochronologia 53:73–81.  https://doi.org/10.1016/j.dendro.2018.12.001
  49. Groenendijk P, Sass-Klaassen U, Bongers F et al (2014) Potential of tree-ring analysis in a wet tropical forest: a case study on 22 commercial tree species in Central Africa. For Ecol Manag 323:65–68.  https://doi.org/10.1016/j.foreco.2014.03.037CrossRefGoogle Scholar
  50. Gutiérrez G (2014) La relación entre crecimiento y clima en los árboles tropicales: Un estudio dendrocronológico en la Selva de Los Tuxtlas (Veracruz, México). Universidad Atónoma de México, Posgrado en Ciencias BiológicasGoogle Scholar
  51. Gutiérrez V, Silva J (2002) Información técnica para el procesamiento industrial de 134 especies maderables de BoliviaGoogle Scholar
  52. Hallé F, Oldeman R, Tomlinson P (1978) Tropical trees and forests: an architectural analysis. Springer-Verlag, BerlinCrossRefGoogle Scholar
  53. Hazlett D (1987) Seasonal cambial activity for Pentaclethra, Goelthasia and Carapa trees in a Costa Rican lowland forest. Biotropica 19:357–360CrossRefGoogle Scholar
  54. Herrera DA, del Valle JI (2011) Reconstruccion de los niveles del río Atrato con anillos de crecimiento de Prioria copaifera. Dyna 169:121–130Google Scholar
  55. Hietz P, Wanek W, Dünisch O (2005) Long-term trends in cellulose 13C and water-use efficiency of tropical Cedrela and Swietenia from Brazil. Tree Physiol 25:745–752Google Scholar
  56. Hirons A, Thomas P (2018) Applied tree biology. Wiley, HobokenGoogle Scholar
  57. Holdridge LR (1967) Life zone ecology. Tropical Science Center, San JoséGoogle Scholar
  58. Hu J, Riveros DA (2016) Life in the clouds : are tropical montane cloud forests responding to changes in climate ? Oecologia.  https://doi.org/10.1007/s00442-015-3533-x
  59. Hughes M, Swetnam T, Diaz H (2011) Dendroclimatology, progress and prospects. Springer, DordrechtCrossRefGoogle Scholar
  60. IAWA Committee (1989) Iawa list of microscopic features for hardwood identification. AIWA Bull 10:219–332Google Scholar
  61. Islam M, Rahman M, Bräuning A (2018) Growth-ring boundary anatomy and dendrochronological potential in a moist tropical forest in northeastern Bangladesh. Tree-Ring Res 74:1–18.  https://doi.org/10.3959/1536-1098-74.1.76CrossRefGoogle Scholar
  62. Jacoby G (1989) Overview of tree-ring analysis in tropical regions. IAWA J 10:99–108CrossRefGoogle Scholar
  63. Jalil NRA, Takao I, Sahri MH et al (1998) Periodicity of xylem growth of rubberwood (Hevea brasiliensis) grown in Malaysia. Holzforsch - Int J Biol Chem Phys Technol Wood 52:567–572Google Scholar
  64. Johansson M (2010) The circadian clock in annuals and perennials: environmental rhythms coordination of growth with environmental rhythms. Umeå Plant Science Centre Department of Plant Physiology, Umeå University, UmeåGoogle Scholar
  65. Köhl M, Neupane PR, Lotfiomran N (2017) The impact of tree age on biomass growth and carbon accumulation capacity: a retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12:e0181187.  https://doi.org/10.1371/journal.pone.0181187CrossRefPubMedPubMedCentralGoogle Scholar
  66. León W (2008) Anatomía de madera en 31 especies de la subfamilia Mimosoideae (Leguminosae) en Venezuela. Colomb For 11:113–135CrossRefGoogle Scholar
  67. León W (2014) Anatomía de la madera de 108 especies de Venezuela, vol PE1. Pittieria, Mérida, Venezuela pp 1–263Google Scholar
  68. Lisi C, Fihlo M, Botosso PC et al (2008) Tree-ring formation, radial increment periodicity, and phenology of tree species from a seasonal semi-deciduous forest in Southeast Brazil. IAWA J 29:189–207.  https://doi.org/10.1163/22941932-90000179CrossRefGoogle Scholar
  69. Liu L, Filkov V, Groover A (2014) Modeling transcriptional networks regulating secondary growth and wood formation in forest trees. Physiol Plant 151:156–163.  https://doi.org/10.1111/ppl.12113CrossRefPubMedGoogle Scholar
  70. Lopes de Oliveira C (2010) Estimativa da dinȃmica de carbono na biomassa lenhosa de terra firme na Reserva de Desemvolvimento Sustentável de Amanã por métodos dendrocronológicos. Dissertação (Mestrado), Instituto Nacional de Pesquisas da Amaônia, Programa de Posgraduação, ManausGoogle Scholar
  71. López-Ayala JL, Valdez-Hernández JI, Terrazas T et al (2006) Anillos de crecimiento y su periodicidad en tres especies tropicales del Estado de Colima, México. Agrociencia 40:533–544Google Scholar
  72. Lotfiomran N, Köhl M (2017) Retrospective analysis of growth a contribution to sustainable forest management in the tropics. IAWA J 38:297–312.  https://doi.org/10.1163/22941932-20170173CrossRefGoogle Scholar
  73. Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees - Struct Funct 23:683–700.  https://doi.org/10.1007/s00468-009-0324-1CrossRefGoogle Scholar
  74. MAE-FAO (Ministerio del Ambiente del Ecuador - Organización de las Naciones Unidas para la Alimentación y la Agricultura) (2014) Propiedades anatómicas, físicas y mecánicas de 93 especies forestales. FAO, QuitoGoogle Scholar
  75. Maingi JK (2006) Growth rings in tree species from the Tana River floodplain, Kenya. J East African Nat Hist 95:181–211.  https://doi.org/10.2982/0012-8317(2006)95[181:GRITSF]2.0.CO;2CrossRefGoogle Scholar
  76. Marcati CR, Oliveira JS, Machado SR (2006) Growth rings in cerrado woody species: occurrence and anatomical markers. Biota Neotrop 6.  https://doi.org/10.1590/s1676-06032006000300001
  77. Marcati CRC, Dias C, Rodriguez S et al (2008) Seasonal development of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). Trees - Struct Funct 22:3–12.  https://doi.org/10.1007/s00468-007-0173-8CrossRefGoogle Scholar
  78. Marcati CR, Machado SR, Podadera DS et al (2016) Cambial activity in dry and rainy season on branches from woody species growing in Brazilian Cerrado. Flora Morphol Distrib Funct Ecol Plants 223:1–10.  https://doi.org/10.1016/j.flora.2016.04.008CrossRefGoogle Scholar
  79. Marcelo J (2017) Diversidade florística, dendrologia e dendroecologia de florestas estacionais decíduas do Centro e Norte do Peru. Dissertação (Doutorado), Escola Superior de Agricultura “Luiz de Queiroz-USPGoogle Scholar
  80. Menezes M, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Braganca Peninsula, North Brazil. Wetl Ecol Manag 11:233–242(10).  https://doi.org/10.1023/A:1025059315146CrossRefGoogle Scholar
  81. Mesa O, Poveda G, Carvajal L (1997) Introducción al clima de Colombia. Universidad Nacional de Colombia Sede Medellín, Facultad de Ciencias, MedellínGoogle Scholar
  82. Miller R, Détienne P (2001) Major timber trees of Guyana wood anatomy. Tropenbos International, WageningenGoogle Scholar
  83. Morel H (2013) Dynamique de croissance radiale saisonnière et annuelle des arbres en forêt tropicale humide guyanaise. Thèse (Sciences de la Vie), Université des Antilles et de la Guyane, Cayenne, Guyane FrançaiseGoogle Scholar
  84. Moreno MM, del Valle JI (2014) Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia. Trees 29:97–107.  https://doi.org/10.1007/s00468-014-1094-yCrossRefGoogle Scholar
  85. Mushove PT, Prior JAB, Gumbie C et al (1995) The effects of different environments on diameter growth increments of Colophospermum mopane and Combretum apiculatum. For Ecol Manag 72:287–292.  https://doi.org/10.1016/0378-1127(94)03468-CCrossRefGoogle Scholar
  86. Nahuz AR, Miranda M, Ielo P et al (2013) Catalogo de Madeiras Brasileiras para a Construcao Civil. Instituto de Pesquisas Tecnológicas do Estado de São Paulo (ITP), Sao PauloGoogle Scholar
  87. Nakai W, Okada N, Sano M et al (2018) Sample preparation of ring-less tropical trees for δ18O measurement in isotope dendrochronology. Tropics 27:49–58.  https://doi.org/10.3759/tropics.ms17-09CrossRefGoogle Scholar
  88. Nath CD, Munoz F, Pélissier R et al (2016) Growth rings in tropical trees: role of functional traits, environment, and phylogeny. Trees.  https://doi.org/10.1007/s00468-016-1442-1
  89. Nicolini E, Beauchêne J, De La Vallée BL et al (2012) Dating branch growth units in a tropical tree using morphological and anatomical markers: the case of Parkia velutina Benoist (Mimosoïdeae). Ann For Sci 69:543–555.  https://doi.org/10.1007/s13595-011-0172-1CrossRefGoogle Scholar
  90. Niinemets O, Valladares F (2008) Environmental tolerance. In: Jorgensen P (ed) Encyclopedia of ecology. Elsevier, Oxford, pp 1370–1376CrossRefGoogle Scholar
  91. O’Brien JJ, Oberbauer SF, Clark DB et al (2008) Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest. Biotropica 40:151–159.  https://doi.org/10.1111/j.1744-7429.2007.00354.xCrossRefGoogle Scholar
  92. Ohashi Y, Sahri MH, Yoshizawa N et al (2001) Annual rhythm of xylem growth in rubberwood (Hevea brasiliensis) trees grown in Malaysia. Holzforschung 55:151–154.  https://doi.org/10.1515/HF.2001.024CrossRefGoogle Scholar
  93. Oliveira M, Mattos P, Muñoz-Braz E et al (2014) Growth pattern of Qualea albiflora and Goupia glabra in Amazon forest, Mato Grosso state, Brazil. In: The International Forestry Review. IUFROGoogle Scholar
  94. Palubicki W (2013) A computational study of tree architecture. University of Calgary, CalgaryGoogle Scholar
  95. Parolin P, Ferreira F, Piedade MTF et al (2016) Flood tolerant trees in seasonally inundated lowland tropical floodplains. In: Goldstein G, Santiago L (eds) Tropical tree physiology adaptations and responses in a changing environment. Springer, Switzerland, pp 127–148Google Scholar
  96. Phan SM, Nguyen HTT, Nguyen TK et al (2019) Modelling above ground biomass accumulation of mangrove plantations in Vietnam. For Ecol Manag 432:376–386.  https://doi.org/10.1016/j.foreco.2018.09.028CrossRefGoogle Scholar
  97. Pons TL, Helle G (2011) Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25:83–93.  https://doi.org/10.1007/s00468-010-0527-5CrossRefGoogle Scholar
  98. Poussart PF, Evans MN, Schrag DP (2004) Resolving seasonality in tropical trees: multi-decade, high-resolution oxygen and carbon isotope records from Indonesia and Thailand. Earth Planet Sci Lett 218:301–316.  https://doi.org/10.1016/S0012-821X(03)00638-1CrossRefGoogle Scholar
  99. Poveda GG, Mesa OJ (2000) On the existence of Lloró (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys Res Lett 27:1675–1678.  https://doi.org/10.1029/1999GL006091CrossRefGoogle Scholar
  100. Póvoa de Mattos P (1999) Identificação de anéis anuais de crescimento e estimativa de idade e incremento anual em diâmetro de espécies nativas do Pantanal da Nhecolândia. Dissertação, Universidade Federal do ParanáGoogle Scholar
  101. Prance GT (1982) A review of the phytogeographic evidences for Pleistocene climate changes in the neotropics. Ann - Missouri Bot Gard 69:594–624.  https://doi.org/10.2307/2399085CrossRefGoogle Scholar
  102. Ramírez JA, del Valle JI (2011) Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev Biol Trop 59:1389–1405PubMedPubMedCentralGoogle Scholar
  103. Ramírez JA, del Valle JI (2012) Local and global climate signals form tree rings of Parkinsonia praecox in La Guajira, Colombia. Int J Climatol 32:1–30.  https://doi.org/10.1017/CBO9781107415324.004
  104. Ramírez-Martínez M, Terrazas T, Aguilar-Rodríguez S et al (2017) Anatomía de la madera de especies de la selva baja caducifolia de Tamaulipas, México. Madera Bosques 23:21–41.  https://doi.org/10.21829/myb.2017.2321126CrossRefGoogle Scholar
  105. Reimer PJ, Brown TA, Reimer RW (2004) Discussion: reporting and calibration of post-bomb 14C data. Radiocarbon 46:129–1304Google Scholar
  106. Roig FA, Osornio JJJ, Diaz JV et al (2005) Anatomy of growth rings at the Yucatán Peninsula. Dendrochronologia 22:187–193.  https://doi.org/10.1016/j.dendro.2005.05.007CrossRefGoogle Scholar
  107. Rojas V (2000) Identificación y clasificación de maderas. Instituto Nacional de Aprendizaje, CartagoGoogle Scholar
  108. Rozendaal DMA (2010) Looking backwards: long-term growth patterns of Bolivian forest trees. PROMAB Scientific series 12, Riberalta, BoliviaGoogle Scholar
  109. Santini L (2013) Descrição macroscópica e microscópica da madeira aplicada na identificação das principais espécies comercializadas no Estado de São Paulo - Programas “São Paulo Amigo da Amazônia” e “Cadmadeira.” Universidade de São PauloGoogle Scholar
  110. Sass U, Killmann W, Eckstein D (1995) Wood formation in two species of Dipterocarpaceae in peninsular Malaysia. IAWA J 16:371–384CrossRefGoogle Scholar
  111. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682.  https://doi.org/10.1038/nmeth.2019CrossRefPubMedPubMedCentralGoogle Scholar
  112. Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597.  https://doi.org/10.1017/S0266467402002389CrossRefGoogle Scholar
  113. Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461.  https://doi.org/10.1007/s00442-005-0147-8CrossRefPubMedGoogle Scholar
  114. Schöngart J, Arieira J, Felfili Fortes C et al (2011) Age-related and stand-wise estimates of carbon stocks and sequestration in the aboveground coarse wood biomass of wetland forests in the northern Pantanal, Brazil. Biogeosciences 8:3407–3421.  https://doi.org/10.5194/bg-8-3407-2011CrossRefGoogle Scholar
  115. Schöngart J, Bräuning A, Barbosa A et al (2017) Dendroecological studies in the Neotropics: history, status and future challenges. In: Amoroso M, Daniels L, Baker P, Camarero J (eds) Dendroecology: tree-ring analysis applied to ecological studies, Springer, Cham, pp 35–69Google Scholar
  116. Schweingruber FH (1988) Tree Rings. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  117. Schweingruber FH (2007) Wood structure and environment. Springer, BerlinGoogle Scholar
  118. Schweingruber FH, Börner A (2018) The plant stem. Springer, ChamGoogle Scholar
  119. Sharma VK (2003) Adaptive significance of circadian clocks. Chronobiol Int 20:901–919.  https://doi.org/10.1081/CBI-120026099CrossRefPubMedPubMedCentralGoogle Scholar
  120. Shimamoto CY, Botosso PC, Amano E et al (2016) Stem growth rhythms in trees of a tropical rainforest in Southern Brazil. Trees 30:99–111.  https://doi.org/10.1007/s00468-015-1279-zCrossRefGoogle Scholar
  121. Silva M, de Assis F, Callado CH et al (2017) Growth rings in woody species of Ombrophilous Dense Forest: occurrence, anatomical features and ecological considerations. Brazilian J Bot 40:281–290.  https://doi.org/10.1007/s40415-016-0313-8
  122. Silva M, Funch LS, da Silva LB (2019) The growth ring concept: seeking a broader and unambiguous approach covering tropical species. Biol Rev 94:1161–1178.  https://doi.org/10.1111/brv.12495
  123. Skolmen RG (1974) Some woods of Hawaii properties and uses of 16 commercial species. Forest Service, BerkeleyGoogle Scholar
  124. Soliz-Gamboa C, Rozendaal DMA, Ceccantini G et al (2011) Evaluating the annual nature of juvenile rings in Bolivian tropical rainforest trees. Trees 25:17–27.  https://doi.org/10.1007/s00468-010-0468-zCrossRefGoogle Scholar
  125. Speer J (2010) Fundamentals of tree ring research. University of Arizona Press, TucsonGoogle Scholar
  126. Steinhof A, Altenburg M, Machts H (2017) Sample preparation at the Jena 14C laboratory. Radiocarbon 59:815–830.  https://doi.org/10.1017/RDC.2017.50
  127. Sudworth G, Mell C (1911) “Colombian mahogany” (Cariniana pyriformis), its characteristics and its use as a substitute for true mahogany (Swietenia mahagoni). Department of Agriculture, Forest Service, WhasingtonGoogle Scholar
  128. Tanaka A (2005) Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã-AM. Dissertação (Doutorado), Universidade Federal do Amazonas – UFAM Instituto Nacional de Pesquisas da Amazônia – INPAGoogle Scholar
  129. Tarelkin Y, Delvaux C, De Ridder M et al (2016) Growth-ring distinctness and boundary anatomy variability in tropical trees. IAWA J 37:275–294.  https://doi.org/10.1163/22941932-20160134CrossRefGoogle Scholar
  130. Tarhule A, Hughes M (2002) Tree-ring research in semi-arid West Africa: need and potential item. Tree-Ring Res 58:31–46Google Scholar
  131. Thomas P (2014) Trees: their natural history. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  132. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94.  https://doi.org/10.2307/210739CrossRefGoogle Scholar
  133. Tomlinson T, Craichead F (1972) Growth-ring studies on the native trees of subtropical Florida. In: Ghouse K, Yunus M (eds) Research trends in plant anatomy. McGraw Hill, New Delhi, pp 39–51Google Scholar
  134. Tomlinson P, Longman K (1981) Growth phenology of tropical trees in relation to cambial activity. In: Bormann F, Berlyn G (eds) Age and growth rate of tropical trees: new dimensions for research. Yale University, New Haven, pp 7–19Google Scholar
  135. Trevizor TT (2011) Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará Tássio. Universidade de São Paulo, PiracicabaGoogle Scholar
  136. Vaganov E, Hughes M, Shashkin A (2006) Growth dynamics of conifer tree ring. Springer, BerlinGoogle Scholar
  137. Vásquez A, Ramírez A (2005) Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, MedellínGoogle Scholar
  138. Vetter RE, Botosso PC (1989) Remarks on age and growth rate determination of amazonian trees. IAWA J 10:133–145.  https://doi.org/10.1163/22941932-90000481CrossRefGoogle Scholar
  139. Wagner F, Rossi V, Stahl C et al (2012) Water availability is the main climate driver of neotropical tree growth. PLoS One 7.  https://doi.org/10.1371/journal.pone.0034074
  140. Walter H, Harnickell E, Mueller-Dombois D (1975) Climate-diagrams maps. Springer, BerlinCrossRefGoogle Scholar
  141. Wang KH, Hamzah MZ (2018) Different cambial activities in response to climatic factors of three Malaysian rainforest Shorea species with different stem diameters. Trees - Struct Funct 32:1519–1530.  https://doi.org/10.1007/s00468-018-1730-zCrossRefGoogle Scholar
  142. Wheeler EA, Baas P, Rodgers S (2007) Variations in dicot wood anatomy: a global analysis based on the insidewood database. IAWA J 28:229–258.  https://doi.org/10.1163/22941932-90001638CrossRefGoogle Scholar
  143. Whitmore T (1975) Tropical rain forest of the Far East. Clarendon Press, OxfordGoogle Scholar
  144. Wiedenhoeft A (2011) Identificación de las especies maderables de centroamérica. USDA, MadisonGoogle Scholar
  145. Worbes M (1995) How to measure growth dynamics in tropical trees. IAWA J 16:337–351.  https://doi.org/10.1163/22941932-90001424CrossRefGoogle Scholar
  146. Worbes M (1999) Annual growth rings, rainfall-dependent growth and long-term growth patterns of tropical trees from the Caparo Forest Reserve in Venezuela. J Ecol 87:391–403.  https://doi.org/10.1046/j.1365-2745.1999.00361.xCrossRefGoogle Scholar
  147. Worbes M (2002) One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia 20:217–231.  https://doi.org/10.1078/1125-7865-00018CrossRefGoogle Scholar
  148. Worbes M, Fichtler E (2010) Wood anatomy and tree-ring structure and their importance for tropical dendrochronology. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Amazonian floodplain forest. Springer, Dordrecht, pp 329–346Google Scholar
  149. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507CrossRefGoogle Scholar
  150. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20:255–260CrossRefGoogle Scholar
  151. Worbes M, Herawati H, Martius C (2017) Tree growth rings in tropical peat swamp forests of Kalimantan, Indonesia. Forests 8:1–15.  https://doi.org/10.3390/f8090336CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jorge A. Giraldo
    • 1
    Email author
  • Jorge I. del Valle
    • 2
  • Carlos A. Sierra
    • 3
  • Omar Melo
    • 4
  1. 1.Universidad Nacional de Colombia, Sede MedellínMedellínColombia
  2. 2.Departamento de Ciencias ForestalesUniversidad Nacional de Colombia, Sede MedellínMedellínColombia
  3. 3.Max Planck Institute for BiogeochemistryJenaGermany
  4. 4.Universidad del TolimaIbaguéColombia

Personalised recommendations