Advertisement

Responses of Growth to Climate and Drought in Two Sympatric Mexican Pine Species

  • Marcos González-Cásares
  • Andrea Cecilia Acosta-HernándezEmail author
  • José Manuel Zúñiga-Vásquez
  • Gerardo Herrera-Soto
  • J. Julio Camarero
Chapter

Abstract

Climate change and its ecological consequences are a highly topical concern, particularly considering the effects on forests and their capacity for growth and ability to uptake and fix carbon as wood. Exploring the influence of climate on the radial growth of sympatric tree species is important to the understanding of the impacts of climate warming on forest composition and productivity. In this study, we used dendrochronology to investigate how the growth of two sympatric pine species, Pinus leiophylla and Pinus teocote, growing in northern Mexico respond to climatic variables at inter-annual scales. In general, the response of the two species to the climatic conditions was similar. Prior humid and cold winter and current summer conditions enhanced growth, whereas warm conditions in the prior summer and late winter, related to high evapotranspiration rates, constrained growth. It is therefore necessary to focus on the response of these species to the forecasted temperature increase. Further studies could also investigate if other sympatric tree species also show similar growth responses to climate and drought.

Keywords

Pinus leiophylla Pinus teocote Mexico SPEI Spatial correlation Sensitivity climatic 

Notes

Acknowledgments

We are grateful to CONACYT for the doctoral scholarship awarded to the first and correspondence authors and for project CB-2013/222522 of CONACYT (National Council of Science and Technology). We also thank COCYTED (Council of Science and Technology of the State of Durango) for the resources granted to support this work. Also, we are grateful to the editors and anonymous reviewers for their useful comments and suggestions. We thank José Luis Gallardo Salazar for his assistance in edition of photographs used in this chapter.

References

  1. Acosta-Hernández AC, Pompa-García M, Camarero JJ (2017) An updated review of dendrochronological investigations in Mexico, a megadiverse country with a high potential for tree-ring sciences. Forests 8:160.  https://doi.org/10.3390/f8050160CrossRefGoogle Scholar
  2. Acosta-Hernández AC, Camarero JJ, Pompa-García M (2019) Seasonal growth responses to climate in wet and dry conifer forests. IAWA J:1–S1.  https://doi.org/10.1163/22941932-40190226
  3. Alba-Landa J, Mendizábal-Hernández LDC, Ramírez-García EO et al (2011) Tecnología para el manejo de Pinus teocote Schl. et Cham. Foresta Veracruzana 13(1):43–48Google Scholar
  4. Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684.  https://doi.org/10.1016/j.foreco.2009.09.001CrossRefGoogle Scholar
  5. Allen CD, Breshears DD, McDowell NG (2015) On underestimation of global vulnerability 737 to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6(8):129.  https://doi.org/10.1890/ES15-00203.1CrossRefGoogle Scholar
  6. Antúnez P, Wehenkel C, López-Sánchez CA et al (2017) The role of climatic variables for estimating probability of abundance of tree species. Pol J Ecol 65(3):324–339.  https://doi.org/10.3161/15052249PJE2017.65.3.002CrossRefGoogle Scholar
  7. Antúnez P, Suárez-Mota M, Valenzuela-Encinas C et al (2018) The potential distribution of tree species in three periods of time under a climate change scenario. Forests 9(10):628.  https://doi.org/10.3390/f9100628CrossRefGoogle Scholar
  8. Bartelt-Ryser J, Joshi J, Schmid B et al (2005) Soil feed-backs of plant diversity on soil microbial communities and subsequent plant growth. Perspect Plant Ecol Syst 7:27–49.  https://doi.org/10.1016/j.ppees.2004.11.002CrossRefGoogle Scholar
  9. Barton AM, Teeri JT (1993) The ecology of elevational positions in plants: drought resistance in five montane pine species in southeastern Arizona. Am J Bot 80:15–25.  https://doi.org/10.1002/j.1537-2197.1993.tb13762.xCrossRefGoogle Scholar
  10. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124.  https://doi.org/10.1016/j.dendro.2008.01.002CrossRefGoogle Scholar
  11. Bunn AG (2010) Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28(4):251–258.  https://doi.org/10.1016/j.dendro.2009.12.001CrossRefGoogle Scholar
  12. Camarero JJ, Olano JM, Parras A (2010) Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol 185(2):471–480.  https://doi.org/10.1111/j.1469-8137.2009.03073.xCrossRefPubMedGoogle Scholar
  13. Camarero JJ, Gazol A, Sangüesa-Barreda G et al (2015) To die or not to die: early-warning signals of dieback in response to a severe drought. J Ecol 103:44–57.  https://doi.org/10.1111/1365-2745.12295CrossRefGoogle Scholar
  14. Chacón-de la Cruz E, Pompa-García M (2015) Response of tree radial growth to evaporation, as indicated by early and late wood. Rev Chapingo Ser Cie 21(1):57–65.  https://doi.org/10.5154/r.rchscfa.2014.10.050CrossRefGoogle Scholar
  15. Comisión Nacional del Agua CNA (2018) Datos Climáticos de Estaciones Meteorológicas de Durango: El Salto, México. Available online: http://smn1.conagua.gob.mx/index.php?option=com_content&view=article&id=180:durango&catid=14:normales-por-estacion
  16. Constante GV, Villanueva DJ, Cerano PJ et al (2009) Dendrocronología de Pinus cembroides Zucc. y reconstrucción de precipitación estacional para el sureste de Coahuila. Revista Ciencia Forestal en México 34:17–38Google Scholar
  17. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental science. Kluwer, Alphen aan den Rijn, p 394CrossRefGoogle Scholar
  18. Cook BI, Seager R (2013) The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res Atmos 118(4):1690–1699.  https://doi.org/10.1002/jgrd.50111CrossRefGoogle Scholar
  19. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3(1):52–58.  https://doi.org/10.1038/NCLIMATE1633CrossRefGoogle Scholar
  20. de la Paz-Pérez OC, Dávalos-Sotelo R (2016) Anatomía de la madera de seis especies de Pinus (Pinaceae) del estado de Durango, México. Madera y Bosques 22(3):113–132.  https://doi.org/10.21829/myb.2016.2231460CrossRefGoogle Scholar
  21. Farjon A, Styles BT (1997) Pinus (Pinaceae). Flora Neotropica monograph 75. The New York Botanical Garden, New YorkGoogle Scholar
  22. Fritts H (1976) Tree-rings and climate. The Blackburn Press, Caldwell, New JerseyGoogle Scholar
  23. García AA, González EMS (2003) Pináceas de Durango. Instituto de Ecología. AC Comisión Nacional Forestal, Leon Guanajuato, p 187Google Scholar
  24. González-Cásares M, Yerena-Yamaliel JI, Pompa-García M (2016) Measuring temporal wood density variation improves carbon capture estimates in Mexican forests. Acta Universitaria 26(6):25–28.  https://doi.org/10.15174/au.2016.1206CrossRefGoogle Scholar
  25. González-Cásares M, Pompa-García M, Camarero JJ (2017) Differences in climate-growth relationship indicate diverse drought tolerances among five pine species coexisting in Northwestern Mexico. Trees 31:531–544.  https://doi.org/10.1007/s00468-016-1488-0CrossRefGoogle Scholar
  26. González-Cásares M, Pompa-García M, Venegas-González A (2018) Climate signals from intra-annual wood density fluctuations in Abies durangensis. IAWA J 40(2):276–287.  https://doi.org/10.1163/22941932-40190217CrossRefGoogle Scholar
  27. González-Elizondo MS, González-Elizondo M, López-Enríquez IL et al (2005) Cambios y tendencias sucesionales en ecosistemas de Durango. Vidsupra 1:5–11Google Scholar
  28. González-Elizondo MS, González-Elizondo M, Márquez-Linares MA (2007) Vegetación y ecorregiones de Durango. Plaza y Valdés, México, p 219Google Scholar
  29. González-Elizondo MS, González-Elizondo M, Tena-Flores JA et al (2012) Vegetación de la sierra madre occidental, México: Una síntesis. Acta Bot Mex 100:351–403CrossRefGoogle Scholar
  30. Holmes RL (1983) Computer-assisted quality control in tree ring dating and measurement. Tree Ring Bull 43:69–78Google Scholar
  31. Instituto Nacional de Estadística y Geografía INEGI (2001) Conjunto de datos vectoriales edafológico, escala 1:250000 Serie II. (Continuo Nacional), escala: 1:250000. INEGI, MEX. http://www.conabio.gob.mx/informacion/gis/
  32. Intergovernmental Panel on Climate Change IPCC (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change [core writing team, Pachauri RK, Meyer LA (eds)]. IPCC, Geneva, p 151CrossRefGoogle Scholar
  33. Jasso-Mata J, Jiménez-Casas M (1994) Fenología vegetativa y reproductiva de Pinus leiophylla en un huerto semillero sexual. In: XI Congreso Latinoamericano de Genética y XV Congreso de FitogenéticaGoogle Scholar
  34. Li ZS, Liu GH, Fu BJ et al (2012) Anomalous temperature–growth response of Abies faxoniana to sustained freezing stress along elevational gradients in China’s Western Sichuan Province. Trees 26:1373–1388.  https://doi.org/10.1007/s00468-012-0712-9CrossRefGoogle Scholar
  35. López J, Méndez J, Zermeño A et al (2017) Impact of debarkers upon the radial increment of Pinus teocote Schiede. ex Schltdl. & Cham. and Pseudotsuga menziesii (Mirb.) Franco. Revista Mexicana de Ciencias Forestales 8(41):82–108.  https://doi.org/10.29298/rmcf.v8i41.27CrossRefGoogle Scholar
  36. Marquardt PE, Miranda BR, Jennings S (2018) Variable climate response differentiates the growth of Sky Island ponderosa pines. Trees:1–16.  https://doi.org/10.1007/s00468-018-1778-9
  37. Martin-Benito D, Beeckman H, Canellas I (2013) Influence of drought on tree rings and tracheid features of Pinus nigra and Pinus sylvestris in a Mesic Mediterranean forest. Eur J For Res 132(1):33–45.  https://doi.org/10.1007/s10342-012-0652-3CrossRefGoogle Scholar
  38. Martínez-Berdeja A, Hamilton JA, Bontemps A et al (2019) Evidence for population differentiation among Jeffrey and Ponderosa pines in survival, growth and phenology. For Ecol Manag 434:40–48.  https://doi.org/10.1016/j.foreco.2018.12.009CrossRefGoogle Scholar
  39. Martínez-Trinidad T, Vargas-Hernández J, Muñoz-Orozco A et al (2002) Respuesta al déficit hídrico en Pinus leiophylla: consumo de agua y crecimiento en plántulas de diferentes poblaciones. Agrociencia 36(3):365–376Google Scholar
  40. Patiño VF (1973) Flowering, fruiting, cone collection and some aspects from seeds of the Mexican pines. In: International Symposium on Seed Processing. IUFRO, BergenGoogle Scholar
  41. Perry J (1991) The pines of Mexico and Central America. Oregon Timber Press, Portland, p 231Google Scholar
  42. Pompa-García M, Antonio-Némiga X (2015) Enso index teleconnection with seasonal precipitation in a template ecosystem of Northern Mexico. Atmósfera 28(1):43–50Google Scholar
  43. Pompa-García M, Hadad MA (2016) Sensitivity of pines in Mexico to temperature varies with age. Atmósfera 29(3):209–219.  https://doi.org/10.20937/ATM.2016.29.03.03CrossRefGoogle Scholar
  44. Pompa-García M, Venegas-González A (2016) Temporal variation of wood density and carbon in two elevational sites of Pinus cooperi in relation to climate response in Northern Mexico. PLoS One 11(6):e0156782.  https://doi.org/10.1371/journal.pone.0156782.eCollection2016CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pompa-García M, Cerano-Paredes J, Fulé ZP (2013) Variation in radial growth of Pinus cooperi in response to climatic signals across an elevational gradient. Dendrochronologia 31:198–204.  https://doi.org/10.1016/j.dendro.2013.05.003CrossRefGoogle Scholar
  46. Pompa-García M, Miranda-Aragón L, Aguirre-Salado C (2014) Tree growth response to ENSO in Durango. Mexico Int J Biometeorol 117(3-4):495–500.  https://doi.org/10.1007/s00484-014-0828-2CrossRefGoogle Scholar
  47. Pompa-García M, González-Cásares M, Acosta-Hernández AC et al (2017) Drought influence over radial growth of Mexican conifers inhabiting mesic and xeric sites. Forests 8(5):175.  https://doi.org/10.3390/f8050175CrossRefGoogle Scholar
  48. R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Available at: http://www.R-project.orgGoogle Scholar
  49. Roberts AM, Tansey C, Smithers RJ et al (2015) Predicting a change in the order of spring phenology in temperate forests. Glob Chang Biol 21(7):2603–2611.  https://doi.org/10.1111/gcb.12896CrossRefPubMedPubMedCentralGoogle Scholar
  50. Seager R, Ting M, Davis M et al (2009) Mexican drought: an observational modeling and tree ring study of variability and climate change. Atmósfera 22(1):1–31Google Scholar
  51. Secretaría de Medio Ambiente y Recursos Naturales SEMARNAT (2016) Anuario Estadístico de la Producción Forestal 2016. In: Secretaría de Medio Ambiente y Recursos Naturales, Primera Edición edn, p 225Google Scholar
  52. Stahle DW, Cook ER, Burnette DJ et al (2016) The Mexican drought atlas: tree-ring reconstructions of the soil moisture balance during the late pre-Hispanic, colonial, and modern eras. Quat Sci Rev 149:34–60.  https://doi.org/10.1016/j.quascirev.2016.06.018CrossRefGoogle Scholar
  53. Stokes MA, Smiley TL (1968) An introduction to treering dating. University of Chicago Press, Chicago, p 73Google Scholar
  54. Trinidad TM, Hernández JV, Upton JL et al (2002) Respuesta al déficit hídrico en Pinus leiophylla: Acumulación de biomasa, desarrollo de hojas secundarias y mortandad de plántulas. Terra Latinoamericana 20(3):291–301Google Scholar
  55. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718.  https://doi.org/10.1175/2009JCLI2909.1CrossRefGoogle Scholar
  56. Whittaker RH (1953) A consideration of climax theory: the climax as a population and pattern. Ecol Monogr 23(1):41–78CrossRefGoogle Scholar
  57. Wieser G, Oberhuber W, Gruber A et al (2016) Stable water use efficiency under climate change of three sympatric conifer species at the alpine treeline. Front Plant Sci 7:799.  https://doi.org/10.3389/fpls.2016.00799CrossRefPubMedPubMedCentralGoogle Scholar
  58. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213.  https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar
  59. Williams AP, Allen CD, Macalady AK et al (2013) Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Chang 3:292–297.  https://doi.org/10.1038/NCLIMATE1693CrossRefGoogle Scholar
  60. Ziaco E, Biondi F (2016) Tree growth, cambial phenology, and wood anatomy of limber pine at a Great Basin (USA) mountain observatory. Trees 30(5):1507–1521.  https://doi.org/10.1007/s00468-016-1384-7CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Programa Institucional de Doctorado en Ciencias Agropecuarias y ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
  2. 2.Facultad de Ciencias ForestalesUniversidad Juárez del Estado de DurangoDurangoMexico
  3. 3.Instituto Pirenaico de Ecología (IPE-CSIC)ZaragozaSpain

Personalised recommendations