Advertisement

Tree-Growth Variations of Nothofagus antarctica Related to Climate and Land Use Changes in Southern Patagonia, Argentina

  • Evangelina Soledad Vettese
  • Ricardo Villalba
  • Ivonne Alejandra Orellana Ibáñez
  • Pablo Luis Peri
Chapter
  • 32 Downloads

Abstract

Isolated forest patches of Nothofagus antarctica (ñire) are frequent in the Patagonian forest-steppe ecotone. These remnants, also called relicts (R), are separate from the continuous forests (C). Over the past century, these ecotonal forests have been impacted by anthropogenic activities, including fires, logging, and cattle ranching. In order to identify in N. antarctica ring-width records the variations in tree growth associated with documented changes in land use, five sites were selected in Santa Cruz, Argentina. In each site, increment cores from R and C were collected. We developed individual chronologies, and the relationships between regional climate variations and N. antarctica growth were established for each forest type and site. The similarities/differences between site-paired chronologies (R-C) were estimated by calculating moving correlation coefficients lagged by 1 year. N. antarctica regional growth was directly related to precipitation during the current growing season (November–December; r = 0.34, n = 62, p < 0.01), and inversely related to temperature (December–March; r = −0.58, n = 62, p < 0.001). Since the middle of the twentieth century, a progressive decrease has been recorded in regional radial growth, consistent with an increase in summer temperature and a decrease in spring precipitation. In the context of this regional response of N. antarctica to climate, differences in growth patterns between R and C were associated with past changes in land use. Overall, the largest differences between R and C chronologies were concurrent with the settlement of cattle ranches and the associated use of forests. Conversely, similarities between R and C records increased after the establishment of protected areas and during the implementation of similar management practices in both forest types. Our research provides the first dendrochronological records from Nothofagus antarctica for the Argentinean Patagonia and represents one of the first efforts to identify in tree-rings past changes in livestock practices in southern South America.

Keywords

Forest-steppe ecotone Relict and continuous forest Dendrochronology Climate-tree growth relationship Historical and cultural use of the land Dendroclimatology 

Supplementary material

477499_1_En_15_MOESM1_ESM.png (2.1 mb)
Fig. 15.S1 Spatial correlation pattern between monthly surface temperature in Torre Glacier (IANIGLA-CONICET) (black dot) and gridded data from the ERA Interim re-analysis during the 2002–2016 period. The location of the meteorological stations from Esquel, Río Gallegos and Punta Arenas are indicated by grey dots. Study sites are numbered within white dots (PNG 2186 KB)
477499_1_En_15_MOESM2_ESM.png (2 mb)
Fig. 15.S2 Spatial correlation pattern between monthly precipitation from Los Huemules station (black dot) and gridded data from the ERA Interim re-analysis during the 2006–2016 period. The location of the meteorological station from Punta Arenas is indicate by a grey dot. Study sites are numbered within white dots (PNG 2037 KB)
477499_1_En_15_MOESM3_ESM.png (651 kb)
Fig. 15.S3 Spatial correlation pattern between seasonal (Dec-Aug) precipitation from Punta Arenas station (black dot) and gridded data from the ERA Interim re-analysis during the 1979–2017 period. The location of the study sites are numbered within white dots (PNG 651 kb)

References

  1. Alberdi M (1995) Ecofisiología de especies leñosas de los bosques hidrófilos templados de chile: resistencia a la sequía y bajas temperaturas. En: Armesto J, Villagrán C, Arroyo M (eds) Ecología de los bosques nativos de Chile. Universidad de Chile, Santiago, p 420Google Scholar
  2. Amoroso M, Chillo V, Alcala V et al (2018) Efecto del manejo silvopastoril sobre la estructura y dinámica poblacional de bosques mixtos de ciprés de la cordillera (Austrocedrus chilensis) y coihue (Nothofagus dombeyi). Revista Ecosistemas 27(3):33–40.  https://doi.org/10.7818/ECOS.1502CrossRefGoogle Scholar
  3. Aravena JC, Luckman BH (2009) Spatio-temporal rainfall patterns in southern South America. Int J Climato 129(14):2106–2120.  https://doi.org/10.1002/joc.1761CrossRefGoogle Scholar
  4. Aravena JC, Carmona M, Pérez C et al (2002a) Cambios en la riqueza de especies arbóreas, estructura de rodales y propiedades del suelo en una cronosecuencia sucesional en el norte de la Isla de Chiloé, Chile. Revista Chilena de Historia Natural 75(2):339–360.  https://doi.org/10.4067/s0716-078x2002000200007CrossRefGoogle Scholar
  5. Aravena JC, Lara A, Wolodarsky-Franke A et al (2002b) Tree-ring growth patterns and temperature reconstruction from Nothofagus pumilio (Fagaceae) forests at the upper tree line of southern Chilean Patagonia. Rev Chil Hist Nat 75(2):361–376.  https://doi.org/10.4067/S0716-078X2002000200008CrossRefGoogle Scholar
  6. Arias-Sepúlveda JEA, Chillo V (2017) Cambios en la diversidad funcional del sotobosque y la tasa de descomposición frente a diferentes intensidades de uso silvopastoril en el noroeste de la Patagonia, Argentina. Ecol Austral 27(1):029–038Google Scholar
  7. Bandieri S (2005) Asuntos de familia. La construcción del poder en la Patagonia: el caso de Neuquén. Boletín del Instituto de Historia Argentina y Americana Dr. Emilio Ravignani 28:65–94Google Scholar
  8. Barbería EM (1994) El extremo austral sudamericano.: Ocupación y relaciones de los territorios argentinos y chilenos, 1880–1920. Estud Front 33:185–212Google Scholar
  9. Barbería EM (1995) Los dueños de la tierra en la Patagonia Austral: 1880–1920. Universidad federal de la Patagonia Austral, Santa CruzGoogle Scholar
  10. Blasing TJ, Solomon AM, Duvick DN (1984) Response functions revisited. Tree-Ring Bull 44:1–15Google Scholar
  11. Boninsegna JA, Argollo J, Aravena JC et al (2009) Dendroclimatological reconstructions in South America: a review. Palaeogr Palaeocl 281(3–4):210–228.  https://doi.org/10.1016/j.palaeo.2009.07.020CrossRefGoogle Scholar
  12. Christensen M, Emborg J (1996) Biodiversity in natural versus managed forest in Denmark. Forest Ecol Manag 85(1–3):47–51.  https://doi.org/10.1016/s0378-1127(96)03749-8CrossRefGoogle Scholar
  13. Cook ER (1985) A time series analysis approach to tree-ring standardization. Ph. D. dissertation, University of Arizona, Arizona, p 183Google Scholar
  14. Coronato FR, Del Valle HF (1993) Methodological comparison in the estimate of fluvial erosion in an arid closed basin of northeastern Patagonia. J Arid Environ 24(3):231–239.  https://doi.org/10.1006/jare.1993.1021CrossRefGoogle Scholar
  15. Di Castri F, Hansen A, Holland M (1988). A new look at ecotones: emerging international projects on landscape boundaries. Biology Internat. Special issue 17, Internet. Union of Biol Sci, pp 1–163Google Scholar
  16. Díaz BG (2005) Uso múltiple de recursos naturales renovables en la Cuenca Río de las Vueltas, provincia de Santa Cruz. (Tesis de Mg. Sci. Manejo de Cuencas Hidrográficas). Universidad Nacional de La Plata. Argentina, p 195Google Scholar
  17. Donoso C (1993) Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Ecología Forestal. Editorial Universitaria, SantiagoGoogle Scholar
  18. Donoso C, Steinke L, Premoli A (2006) Nothofagus antarctica (G. Forster) Oerst. ñirre, ñire, ñiré, anís (Tierra Del Fuego) ñirre: de ngërü (Mapudungun): zorro. En: Donoso C (Ed.), Las especies arbóreas de los bosques templados de Chile y Argentina. Autoecología. Ed. Cuneo, M. Santiago, ChileGoogle Scholar
  19. Fritts HC (1976) Tree rings and climate. Academic Press, LondonGoogle Scholar
  20. Garreaud R, Lopez P, Minvielle M et al (2013) Large-scale control on the Patagonian climate. J Clim 26(1):215–230.  https://doi.org/10.1175/JCLI-D-12-00001.1CrossRefGoogle Scholar
  21. González MH, Vera CS (2010) On the interannual wintertime rainfall variability in the southern Andes. Int J Climatol 30(5):643–657.  https://doi.org/10.1002/joc.1910CrossRefGoogle Scholar
  22. Gowda JH, Kitzberger T, Premoli AC (2012) Landscape responses to a century of land use along the northern Patagonian forest-steppe transition. Plant Ecol 213(2):259–272.  https://doi.org/10.1007/s11258-011-9972-5CrossRefGoogle Scholar
  23. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–467.  https://doi.org/10.1111/j.1461-0248.2005.00739.xCrossRefPubMedGoogle Scholar
  24. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978.  https://doi.org/10.1002/joc.1276CrossRefGoogle Scholar
  25. Holmes RL (1983) Computer-assisted quality control. Tree-Ring Bull 43:69–78Google Scholar
  26. Ipinza R, Pérez F, Kappes A (1989) Cyttaria espinosae Lloyd., un hongo de interés en fitopatología, alimentación y evolución de los bosques de Nothofagus en Chile. Bol Soc Micol Madrid 13:31–48Google Scholar
  27. Ivancich HS (2013) Relaciones entre la estructura forestal y el crecimiento del bosque de Nothofagus antarctica en gradientes de edad y calidad de sitio. Tesis doctoral, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, ArgentinaGoogle Scholar
  28. Iverson LR, Schwartz MW, Prasad AM (2004) How fast and far might tree species migrate in the eastern United States due to climate change? Glob Ecol Biogeogr 13(3):209–219.  https://doi.org/10.1111/j.1466-822X.2004.00093.xCrossRefGoogle Scholar
  29. Jara JCL (2011) Relaciones entre el crecimiento de Nothofagus betuloides y el clima local y de gran escala en bosques subantárticos de la Isla Navarino. (Tesis de grado). Universidad Austral de Chile, ValdiviaGoogle Scholar
  30. Kitzberger T (2012) Ecotones as complex arenas of disturbance, climate, and human impacts: the trans-Andean forest-steppe ecotone of northern Patagonia. In: Ecotones between forest and grassland. Springer, New York, pp 59–88CrossRefGoogle Scholar
  31. Kreps G, Martínez PGM, Peri PL (2012) Cambio climático en Patagonia sur. Escenarios futuros en el manejo de los recursos naturales. INTA (ed), Santa Cruz, ArgentinaGoogle Scholar
  32. Lara A, Aravena JC, Villalba R et al (2001) Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the Central Andes of Chile. Can J For Res 31(6):925–936.  https://doi.org/10.1139/x00-208CrossRefGoogle Scholar
  33. Lara A, Villalba R, Wolodarsky-Franke A et al (2005) Spatial and temporal variation in Nothofagus pumilio growth at tree line along its latitudinal range (35 40′-55 S) in the Chilean Andes. J Biogeogr 32(5):879–893.  https://doi.org/10.1111/j.1365-2699.2005.01191.xCrossRefGoogle Scholar
  34. Lencinas MV, Martínez PGM, Gallo E et al (2011) Alternative silvicultural practices with variable retention to improve understory plant diversity conservation in southern Patagonian forests. For Ecol Manag 262(7):1236–1250.  https://doi.org/10.1016/j.foreco.2011.06.021CrossRefGoogle Scholar
  35. Manacorda M, Bonvissuto G (2001) Uso silvopastoril de los bosques de ñire (Nothofagus antarctica) en Río Negro, Patagonia Argentina. Revista Forestal Centroamericana 35:41–44Google Scholar
  36. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58(1):35–44.  https://doi.org/10.1023/A:1015820616384CrossRefGoogle Scholar
  37. Marazana O, Verzino G, Ocampo JB et al (1984) Situación actual de los nativos de la Provincia de Santa Cruz: descripción manejo y estado sanitario. Informe Técnico Consejo Agrario Provincial, Córdoba p 33Google Scholar
  38. Martínez-Pastur GM, Peri PL, Fernández C et al (1999) Desarrollo de la regeneración a lo largo del ciclo del manejo forestal de un bosque de Nothofagus pumilio: incidencia del ramoneo de Lama guanicoe. Bosque 20(2):47–53CrossRefGoogle Scholar
  39. Montaña C (1982) Las comunidades de ñire (Nothofagus antarctica (Forst.) Oerst.) de la cuenca del río Manso Superior (Río Negro, Argentina). Tesis Doctoral, Universidad Nacional de Córdoba, Córdoba, ArgentinaGoogle Scholar
  40. Moore DM (1983) The flora of the Fuego-Patagonian cordilleras: its origins and affinities. Rev Chil Hist Nat 56(123–136):123–136Google Scholar
  41. Morales M, Villalba R (2006) Climatic and anthropogenic influences on the dynamics of Prosopis ferox forests in the Quebrada de Humahuaca, Jujuy, Argentina. In: Land use change and mountain biodiversity. CRC Press, Boca Raton, pp 275–282CrossRefGoogle Scholar
  42. Morales MS, Villalba R, Boninsegna JA (2005) Climate, land-use and Prosopis ferox recruitment in the Quebrada de Humahuaca, Jujuy, Argentina. Dendrochronologia 22(3):169–174.  https://doi.org/10.1016/j.dendro.2005.05.004CrossRefGoogle Scholar
  43. Mundo IA, Villalba R, Veblen TT et al (2017) Fire history in southern Patagonia: human and climate influences on fire activity in Nothofagus pumilio forests. Ecosphere 8(9).  https://doi.org/10.1002/ecs2.1932
  44. Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62.  https://doi.org/10.1016/S0169-5347(00)88977-6CrossRefPubMedGoogle Scholar
  45. Neilson RP (1991) Climatic constraints and issues of scale controlling regional biomes. In: Ecotones. Springer, Boston, pp 31–51CrossRefGoogle Scholar
  46. Paruelo MJ, Beltrán A, Jobbágy E et al (1998) The climate of Patagonia: general patterns and controls on biotic processes. Ecol Austral 8:85–101Google Scholar
  47. Pérez Moreau R (1959) Reseña Botánica sobre el Lago Argentino. Instituto Nacional del Hielo Continental Patagónico, Buenos AiresGoogle Scholar
  48. Peri PL, Ormaechea S (2013) Relevamiento de los bosques nativos de ñire (Nothofagus antarctica) en Santa Cruz: base para su conservación y manejo. Ediciones INTA, Buenos AiresGoogle Scholar
  49. Peri PL, Hansen NE, Bahamonde HA et al (2016) Silvopastoral systems under native forest in Patagonia Argentina. In: Silvopastoral systems in southern South America. Springer, pp 117–168Google Scholar
  50. Pulido FJ, Díaz B, Martínez-Pastur GM (2000) Incidencia del ramoneo del guanaco (Lama guanicoe Müller) sobre la regeneración temprana en bosques de lenga [Nothofagus pumilio (Poepp et Endl) Krasser] de Tierra del Fuego, Argentina. Forest Syst 9(2):381–394Google Scholar
  51. Quinteros CP (2018) Propiedades ecosistémicas de bosques de Nothofagus pumilio afectadas por diferente intensidad de uso ganadero en Chubut, Patagonia Argentina. Revista Ecosistemas 27(3):24–32.  https://doi.org/10.7818/ECOS.1483CrossRefGoogle Scholar
  52. Rajchenberg M, Barroetaveña C, Orellana I (2014) Relevamiento de hongos con fines de conocimiento ambiental, turístico y eventualmente productivo. Centro De Investigación Y Extensión Forestal Andino Patagónico (CIEFAP), Esquel, p 96Google Scholar
  53. Ramírez C, Correa M, Figueroa H et al (1985) Variación del hábito y hábitat de Nothofagus antarctica en el centro de Chile. Bosque 6(2):55–73CrossRefGoogle Scholar
  54. Relva MA, Núñez MA (2014) Factores que facilitan y retrasan la invasión de coníferas exóticas en la Isla Victoria. Ecol Austral 24(2):145–153Google Scholar
  55. Relva MA, Veblen TT (1998) Impacts of introduced large herbivores on Austrocedrus chilensis forests in northern Patagonia, Argentina. For Ecol Manag 108(1–2):27–40.  https://doi.org/10.1016/s0378-1127(97)00313-7CrossRefGoogle Scholar
  56. Relva MA, Westerholm CL, Kitzberger T (2009) Effects of introduced ungulates on forest understory communities in northern Patagonia are modified by timing and severity of stand mortality. Plant Ecol 201(1):11–22.  https://doi.org/10.1007/s11258-008-9528-5CrossRefGoogle Scholar
  57. Rodríguez-Catón M, Villalba R (2018) Indicadores del decaimiento en bosques de Nothofagus pumilio en el norte de la Patagonia, Argentina. Madera Bosques 24(2):e2421588.  https://doi.org/10.21829/myb.2018.2421588CrossRefGoogle Scholar
  58. Roig FA (1999) La vegetación de la Patagonia. En: Correa M (Dir.) Flora patagónica. Colección Científica del INTA 8(1):48–166Google Scholar
  59. Roig FA, Villalba R (2008) Understanding climate from Patagonian tree rings. Dev Quat Sci 11:411–435.  https://doi.org/10.1016/S1571-0866(07)10021-XCrossRefGoogle Scholar
  60. Rosenblüth B, Fuenzalida HA, Aceituno P (1997) Recent temperature variations in southern South America. Int J Climatol 17(1):67–85.  https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<67:AID-JOC120>3.0.CO;2-GCrossRefGoogle Scholar
  61. SAyDS (2005) Primer Inventario Nacional de Bosques Nativos. Ministerio de Salud y Ambiente de la Nación – Secretaría de Ambiente y Desarrollo Sustentable, Buenos AiresGoogle Scholar
  62. Schweitzer A (2011) Fronteras, recursos naturales y crisis en la Patagonia sur argentina. In: Integración geoestratégica, seguridad, fronteras y migración en América Latina, editado por Sandoval, J., Álvarez, R. Saavedra, L. Editorial INREDH, Ecuador, pp 33–69Google Scholar
  63. Somlo R, Bonvissuto G, Schlichter T et al (1997) Silvopastoral use of Argentine Patagonian forests. In: Temperate agroforestry systems. CAB International, Wallingford; New York, pp 237–250Google Scholar
  64. Soto-Rogel P, Aravena JC (2017) Potencial dendroclimático de Nothofagus betuloides en la Cordillera de Darwin, Tierra del Fuego, Chile. Bosque 38(1):155–168.  https://doi.org/10.4067/S0717-92002017000100016CrossRefGoogle Scholar
  65. Srur AM, Golluscio RA, Villalba R et al (2013) Grazing-induced morphological and growth rate changes in Anarthrophyllum rigidum, a Patagonian leguminous shrub. Dendrochronologia 31(3):223–227.  https://doi.org/10.1016/j.dendro.2013.02.002CrossRefGoogle Scholar
  66. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  67. Suarez ML (2010) Tree-ring records from Nothofagus dombeyi: a preliminary chronology network in Northern Patagonia, Argentina. Dendrochronologia 28(2):65–72.  https://doi.org/10.1016/j.dendro.2009.11.001CrossRefGoogle Scholar
  68. Teague WR, Smit GN (1992) Relations between woody and herbaceous components and the effects of bush-clearing in southern African savannas. J Grassl Soc South Afr 9(2):60–71.  https://doi.org/10.1080/02566702.1992.9648301CrossRefGoogle Scholar
  69. Vázquez DP (2002) Multiple effects of introduced mammalian herbivores in a temperate forest. Biol Invasions 4(1–2):175–191.  https://doi.org/10.1023/A:1020522923905CrossRefGoogle Scholar
  70. Veblen TT, Lorenz DC (1987) Post-fire stand development of Austrocedrus-Nothofagus forests in northern Patagonia. Vegetatio 71(2):113–126.  https://doi.org/10.1007/BF00044825CrossRefGoogle Scholar
  71. Veblen TT, Kitzberger T, Lara A (1992) Disturbance and forest dynamics along a transect from Andean rain forest to Patagonian shrubland. J Veg Sci 3(4):507–520.  https://doi.org/10.2307/3235807CrossRefGoogle Scholar
  72. Veblen TT, Donoso C, Kitzberger T (1996) Ecology of southern Chilean and Argentinean Nothofagus forests. In: Veblen TT, Hill R, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, Connecticut, pp 293–353Google Scholar
  73. Velásquez C, Henríquez JM, Aravena JC (2012) Damage caused by mistletoe Misodendrum Punctulatum Banks Ex Dc. on architecture and radial growth of Nothofagus pumilio (Poepp. et Endl.) Krasser forests of southern Chile. Austral Ecol 37(7):816–824.  https://doi.org/10.1111/j.1442-9993.2011.02342.xCrossRefGoogle Scholar
  74. Villalba R, Boninsegna JA, Veblen TT et al (1997) Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia. In: Climatic change at high elevation sites. Springer, Dordrecht, pp 193–222CrossRefGoogle Scholar
  75. Villalba R, Lara A, Boninsegna JA et al (2003) Large-scale temperature changes across the southern Andes: 20th century variations in the context of the past 400 years. Clim Chang 59:177–232.  https://doi.org/10.1007/978-94-015-1252-7_10CrossRefGoogle Scholar
  76. Villalba R, Grosjean M, Kiefer T (2009) Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): state of the art and perspectives. Palaeogeogr Palaeoclimatol Palaeoecol 281(3–4):175–179.  https://doi.org/10.1016/j.palaeo.2009.08.007CrossRefGoogle Scholar
  77. Villalba R, Lara A, Masiokas MH et al (2012) Unusual southern hemisphere tree growth patterns induced by changes in the southern annular mode. Nat Geosci 5:793–798.  https://doi.org/10.1038/ngeo1613CrossRefGoogle Scholar
  78. Vuille M, Franquist E, Garreaud R et al (2015) Impact of the global warming hiatus on Andean temperature. J Geophys Res Atmos 120(9):3745–3757.  https://doi.org/10.1002/2015JD023126CrossRefGoogle Scholar
  79. Wigley TM, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213.  https://doi.org/10.1175/1520-0450(1984)023<0201:OTAVOC>2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Evangelina Soledad Vettese
    • 1
  • Ricardo Villalba
    • 2
  • Ivonne Alejandra Orellana Ibáñez
    • 3
  • Pablo Luis Peri
    • 4
  1. 1.Centro de Investigación y Transferencia Santa Cruz (CIT – Santa Cruz – CONICET)Río GallegosArgentina
  2. 2.Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA – CONICET)MendozaArgentina
  3. 3.Facultad de Ciencias Naturales y Ciencias de la Salud– Universidad Nacional de la Patagonia San Juan Bosco (FCNyCS – UNPSJB – Esquel)EsquelArgentina
  4. 4.Instituto Nacional de Tecnología Agropecuaria – Estación Experimental Agropecuaria Santa Cruz (INTA EEA – Santa Cruz). Universidad Nacional de la Patagonia Austral (UNPA – CONICET)Río GallegosArgentina

Personalised recommendations