Advertisement

Dendrochronological Study of the Xeric and Mesic Araucaria araucana Forests of Northern Patagonia: Implications for Ecology and Conservation

  • Martín Ariel HadadEmail author
  • Julieta Gabriela Arco Molina
  • Fidel Alejandro Roig
Chapter
  • 32 Downloads

Abstract

The identification of the forest structure could give insights of the processes that determine certain aspects of the population dynamics over time. To address this concern in the Araucaria araucana forests of northwestern Patagonia in Argentina, 14 forest stands distributed along a strong precipitation gradient were analyzed. A suite of components of the forest structure were considered in order to determine (1) the relationship between climate and tree growth variability, (2) the age structure of each study site by defining age classes through the tree-ring analysis, (3) the relationship between tree age, tree height, and stem diameter, and (4) sex ratio. Xeric forests were affected significantly and negatively by the temperature of the current growing season, while mesic forests were more affected during winter months. Precipitation showed a positive effect on growth at the beginning of the growing season in all forests. Age distribution in the xeric and mesic environments showed a preponderance of trees between 51 and 300, and 51 and 250 years old, respectively. Broadly, male and female trees were more abundant in xeric and mesic forests, respectively. The tree age-diameter and tree height-diameter relationships were significantly positive in both mesic and xeric environments. Through these elements, some aspects of the A. araucana trees and forests in their natural distribution area were revealed, which consolidate a better understanding of the ecology and dynamics of these endemic forests and provide tools for designing proper conservation strategies.

Keywords

Forest structure Precipitation gradient Sex ratio Tree age Tree diameter 

Notes

Acknowledgments

This research was supported by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through a doctoral fellowship granted to MAH and JGAM, by the Agencia Nacional de Promoción Científica y Tecnológica (PICT-Bicentenario 2010-2679 and PICT-2014-0915 to FAR and MAH, respectively) and by the Programa Bosques Andinos-HELVETAS Swiss Intercooperation (RUC N° 20549449931 to FAR). We would like to sincerely acknowledge C. Moreno, S. Piraino, A. Duplancic, E. Barrio, and S. Papú for the field and laboratory assistance. We thank Dr. Daniel Flores for the design of Fig. 13.1. We also thank the Administración de Parques Nacionales of Argentina for allowing access to the sites.

References

  1. Aagesen D (2004) Burning monkey-puzzle: native fire ecology and forest management in northern Patagonia. Agri Hum Values 21(2–3):233–242.  https://doi.org/10.1023/B:AHUM.0000029402.85972.6cCrossRefGoogle Scholar
  2. Aguilera-Betti I, Muñoz A, Stahle D et al (2017) The first millennium-age Araucaria araucana in Patagonia. Tree-Ring Res 73:53–56.  https://doi.org/10.3959/1536-1098-73.1.53CrossRefGoogle Scholar
  3. Ainsworth C (2000) Boys and girls come out to play: the molecular biology of dioecious plants. Ann Bot 86(2):211–221.  https://doi.org/10.1006/anbo.2000.1201CrossRefGoogle Scholar
  4. Arco Molina JG (2018) Intensidad de la señal climática y eficiencia del uso del agua expresada por los anillos de crecimiento de Araucaria araucana en relación con la edad de los árboles en bosques mésicos del norte de Patagonia. Tesis Doctoral. Universidad Nacional de Córdoba, p 198Google Scholar
  5. Armesto JJ, León LP, Kalin AM (1996) Los bosques templados del sur de Chile y Argentina: Una isla biogeográfica. In: Armesto JJ, Villagran C, Kalin Arroyo M (eds) Ecología de los bosques nativos de Chile. Editorial Universitaria, Santiago de ChileGoogle Scholar
  6. Assal T, González M, Sibold J (2018) Burn severity controls on postfire Araucaria-Nothofagus regeneration in the Andean Cordillera. J Biogeogr 45:2483–2494.  https://doi.org/10.1111/jbi.13428CrossRefGoogle Scholar
  7. Barrio-Anta M, Álvarez GJG, Díaz-Maroto IJ et al (2004) Relación altura-diámetro generalizada para Quercus robur L. en Galicia. Cuadernos de la Soc Española Cienc Forest 18:141–146.  https://doi.org/10.31167/csef.v0i18.9451CrossRefGoogle Scholar
  8. Bierzychudek P, Eckhart V (1988) Spatial segregation of the sexes of dioecious plants. Am Nat 132:34–43.  https://doi.org/10.1086/284836CrossRefGoogle Scholar
  9. Brown PM, Wu R (2005) Climate and disturbance forcing of episodic tree recruitment in a southwestern Ponderosa Pine Landscape. Ecology 86:3030–3068.  https://doi.org/10.1890/05-0034CrossRefGoogle Scholar
  10. Burns BR (1991) Regeneration dynamics of Araucaria araucana. Dissertation. University of Colorado, BoulderGoogle Scholar
  11. Burns BR (1993) Fire-induced dynamics of Araucaria araucana-Nothofagus antarctica forest in the southern Andes. J Biogeogr 20(6):669–685.  https://doi.org/10.2307/2845522CrossRefGoogle Scholar
  12. Camarero JJ, Gutiérrez E (2007) Response of Pinus uncinata recruitment to climate warming and changes in grazing pressure in an isolated population of the Iberian System (NE Spain). Arct Antarct Alp Res 39(2):210–217.  https://doi.org/10.1657/1523-0430(2007)39[210:ROPURT]2.0.CO;2CrossRefGoogle Scholar
  13. Charnov EL (1982) The theory of sex allocation. Princeton University Press, PrincetonGoogle Scholar
  14. Cook E (1985) A time series analysis approach to tree ring standardization. Dissertation. School of Renewable Natural Resources, University of Arizona, Tucson (AZ), p 171Google Scholar
  15. Coomes DA, Allen RB (2007) Effects of size, competition and altitude on tree growth. J Ecol 95(5):1084–1097.  https://doi.org/10.1111/j.1365-2745.2007.01280.xCrossRefGoogle Scholar
  16. Dang HS, Zhang YJ, Zhang KR et al (2010) Age structure and regeneration of subalpine fir (Abies fargesii) forests across an altitudinal range in the Qinling Mountains, China. For Ecol Manag 259(3):547–554.  https://doi.org/10.1016/j.foreco.2009.11.011CrossRefGoogle Scholar
  17. Donoso C (1993) Bosques templados de Chile y Argentina. Variación, estructura y dinámica. Editorial Universitaria, Santiago, ChileGoogle Scholar
  18. Duncan RP (1989) An evaluation of errors in tree age estimates based on increments cores in Kahukatea (Dacrycarpus dacrydioides). NZ J Nat Sci 16:31–37Google Scholar
  19. Duplancic MA (2011) Germinación de semillas de Araucaria araucana provenientes del bosque xérico nor-patagónico. Multequina 20:113–115Google Scholar
  20. Ehle DS, Baker WL (2003) Disturbance and stand dynamics in Ponderosa Pine forests in Rocky Mountain National Park, USA. Ecol Monogr 73(4):543–566.  https://doi.org/10.1890/03-4014CrossRefGoogle Scholar
  21. Eriksen W (1971) Betriebsformen und Probleme der Viehwirtschaft am Rande der Argentinischen kordillere. Zeitschriftfuir Ausl Landwirstschaft 10:24–27Google Scholar
  22. Fajardo A, González ME (2009) Replacement patterns and species coexistence in an Andean Araucaria-Nothofagus forest. J Veg Sci 20(6):1176–1190.  https://doi.org/10.1111/j.1654-1103.2009.01117.xCrossRefGoogle Scholar
  23. Fritts H (1976) Tree-rings and climate. Academic Press, LondonGoogle Scholar
  24. Gallo L, Izquierdo F, Sanguinetti LJ et al (2004) Araucaria araucana forest genetic resources in Argentina. In: Vinceti B, Amaral W, Meilleur B (eds) Challenges in managing forest genetic resources for livelihoods: examples from Argentina and Brazil. International Plant Genetic Resources Institute, Rome, pp 115–143Google Scholar
  25. Gandullo R (2003) Fitosociología de los matorrales de “Ñire” (Nothofagus antarctica), con bosque de “Pehuén” (Araucaria araucana), del Parque Provincial Copahue. I. Interpretación Sintaxonómica. Candollea 58:163–181Google Scholar
  26. Gao L, Zhang C, Zhao X et al (2010) Gender-related climate response of radial growth in dioecious Fraxinus mandshurica trees. Tree-Ring Res 66(2):105–112.  https://doi.org/10.3959/2009-5.1CrossRefGoogle Scholar
  27. González M, Veblen TT (2006) Climatic influences on fire in Araucaria araucana-Nothofagus forests in the Andean cordillera of south-central Chile. Écoscience 13(3):342–350.  https://doi.org/10.2980/i1195-6860-13-3-342.1CrossRefGoogle Scholar
  28. González ME, Veblen TT, Sibold JS (2005) Fire history of Araucaria-Nothofagus forests in Villarrica National Park, Chile. J Biogeogr 32(7):1187–1202.  https://doi.org/10.1111/j.1365-2699.2005.01262.xCrossRefGoogle Scholar
  29. González M, Veblen TT, Sibold JS (2010) Influence of fire severity on stand development of Araucaria araucana-Nothofagus pumilio stands in the Andean cordillera of south-central Chile. Austral Ecol 35(6):597–615.  https://doi.org/10.1111/j.1442-9993.2009.02064.xCrossRefGoogle Scholar
  30. Grace J, Norton DA (1990) Climate and growth of Pinus sylvestris at its upper altitudinal limit in Scotland: evidence from tree growth-rings. J Ecol 78(3):601–610.  https://doi.org/10.2307/2260887CrossRefGoogle Scholar
  31. Hadad MA (2013) Análisis florístico-dendrocronológico de los bosques xéricos de Araucaria araucana (Araucariaceae) en el contacto con la estepa patagónica en Neuquén, Argentina. Tesis Doctoral. Universidad Nacional de Córdoba, p 155Google Scholar
  32. Hadad MA, Roig FA (2016) Sex-related climate sensitivity of Araucaria araucana Patagonian forest-steppe ecotone. For Ecol Manag 362:130–141.  https://doi.org/10.1016/j.foreco.2015.11.049CrossRefGoogle Scholar
  33. Hadad MA, Roig JFA, Boninsegna J et al (2015) Age effects on the climatic signal in Araucaria araucana from xeric sites in Patagonia, Argentina. Plant Ecol Divers 8(3):343–351.  https://doi.org/10.1080/17550874.2014.980350CrossRefGoogle Scholar
  34. He F, Duncan RP (2000) Density-dependent effects on tree survival in an old-growth Douglas fir forest. J Ecol 88(4):676–688.  https://doi.org/10.1046/j.1365-2745.2000.00482.xCrossRefGoogle Scholar
  35. Herrmann TM (2006) Indigenous knowledge and management of Araucaria araucana forest in the Chilean Andes: implications for native forest conservation. Biodivers Conserv 15(2):647–662.  https://doi.org/10.1007/s10531-005-2092-6CrossRefGoogle Scholar
  36. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull 43:69–78Google Scholar
  37. Hultine KR, Grady KC, Wood TE et al (2016) Climate change perils for dioecious plant species. Nat Plants 2:16109.  https://doi.org/10.1038/nplants.2016.109CrossRefPubMedGoogle Scholar
  38. IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) . Cambridge University Press, Cambridge, UKGoogle Scholar
  39. Jacoby GC, D'Arrigo R (1989) Reconstructed Northern Hemisphere annual temperature since 1671 based on high-latitude tree-ring data from North America. Clim Chang 14:39–59.  https://doi.org/10.1007/BF00140174CrossRefGoogle Scholar
  40. Kitzberger T, Veblen TT (2003) Influences of climate on fire in northern Patagonia, Argentina. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic change in temperate ecosystems of the western Americas. Ecological studies (analysis and synthesis), vol 160. Springer, New York, NYGoogle Scholar
  41. LaMarche VC, Holmes RL, Dunwiddie PW et al (1979) Tree-ring chronologies of the Southern Hemisphere. University of ArizonaGoogle Scholar
  42. Larsen DR, Hann DW (1987) Height-diameter equations for seventeen tree species in Southwest Oregon. Forest Research Laboratory, College of Forestry, Oregon State University, CorvallisGoogle Scholar
  43. League K, Veblen T (2006) Climatic variability and episodic Pinus ponderosa establishment along the forest-grassland ecotones of Colorado. For Ecol Manag 228:98–107.  https://doi.org/10.1016/j.foreco.2006.02.030CrossRefGoogle Scholar
  44. Lebourgeois F, Eberle P, Mérian P et al (2014) Social status-mediated tree-ring responses to climate of Abies alba and Fagus sylvatica shift in importance with increasing stand basal area. For Ecol Manag 328:209–218.  https://doi.org/10.1016/j.foreco.2014.05.038CrossRefGoogle Scholar
  45. Mast J, Veblen TT, Linhart YB (1998) Disturbance and climatic influences on age structure of Ponderosa Pine at the pine/grassland ecotone, Colorado Front Range. J Biogeogr 25(4):743–755.  https://doi.org/10.1046/j.1365-2699.1998.2540743.xCrossRefGoogle Scholar
  46. Mehtätalo L, De Miguel S, Gregoire TG (2015) Modeling height-diameter curves for prediction. Can J For Res 45(7):826–837.  https://doi.org/10.1139/cjfr-2015-0054CrossRefGoogle Scholar
  47. Molowny-Horas R, Suarez ML, Lloret F (2017) Changes in the natural dynamics of Nothofagus dombeyi forests: population modeling with increasing drought frequencies. Ecosphere 8:1–17.  https://doi.org/10.1002/ecs2.1708CrossRefGoogle Scholar
  48. Mundo IA, Roig JFA, Villalba R et al (2012) Araucaria araucana tree-ring chronologies in Argentina: spatial variations and climate influences. Trees-Struct Funct 26:443–458.  https://doi.org/10.1007/s00468-011-0605-3CrossRefGoogle Scholar
  49. Mundo IA, Kitzberger TF, Roig JA et al (2013) Fire history in the Araucaria araucana forests of Argentina: human and climate influences. Int J Wildland Fire 22:194–206.  https://doi.org/10.1071/WF11164CrossRefGoogle Scholar
  50. Munné-Bosch S (2015) Sex ratios in dioecious plants in the framework of global change. Environ Exper Bot 109:99–102.  https://doi.org/10.1016/j.envexpbot.2014.08.007CrossRefGoogle Scholar
  51. Muñoz AA, Barichivich J, Christie DA et al (2014) Patterns and drivers of Araucaria araucana forest growth along a biophysical gradient in the northern Patagonian Andes: linking tree rings with satellite observations of soil moisture. Austral Ecol 39:158–169.  https://doi.org/10.1111/aec.12054CrossRefGoogle Scholar
  52. North M, Chen J, Oakley B et al (2004) Forest stand structure and pattern of old-growth western hemlock/Douglas-fir and mixed-conifer forests. For Sci 50:299–311Google Scholar
  53. Nuñez C, Nuñez M, Kitzberger T (2008) Sex-related spatial segregation and growth in a dioecious conifer along environmental gradients in Northwestern Patagonia. Ecoscience 15:73–80.  https://doi.org/10.2980/1195-6860(2008)15[73:SSSAGI]2.0.CO;2CrossRefGoogle Scholar
  54. Oliver CD, Larson BC (1996) Forest stand dynamics: updated edition. Wiley, New YorkGoogle Scholar
  55. Ortiz PL, Artista M, Talavera S (2002) Sex ratio and reproductive effort in the dioecious Juniperus communis subsp. alpina (Suter) Celak. (Cupressaceae) along an altitudinal gradient. Ann Bot 89:205–211.  https://doi.org/10.1093/aob/mcf028CrossRefPubMedPubMedCentralGoogle Scholar
  56. Pinheiro J, Bates D, DebRoy S et al (2017) nlme: linear and nonlinear mixed effects models. R package version 3.1–131, https://CRAN.R-project.org/package=nlme.
  57. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/Google Scholar
  58. Rebertus AJ, Burns BR, Veblen TT (1991) Stand dynamics of Pinus flexilis-dominated subalpine forests in the Colorado Front Range. J Veg Sci 2:445–458.  https://doi.org/10.2307/3236026CrossRefGoogle Scholar
  59. Rechene C (2000) Los bosques de Araucaria araucana en Argentina. Estudios silvícolas. CIEFAP, Argentina & Univ Técnica de MunichGoogle Scholar
  60. Roig FA (1998) La vegetación de la Patagonia. In: Correa M (ed) Flora Patagónica. Colec Cient INTA. Tomo VIII (1), Buenos Aires, pp 48–166Google Scholar
  61. Roig FA, Villalba R (2008) Understanding climate from Patagonian tree rings. In: Rabassa J (ed) The late Cenozoic of Patagonia and Tierra del Fuego developments in quaternary science, 11, (Series Ed. Van Der Meer Jjm). Elsevier, Amsterdam, pp 411–438CrossRefGoogle Scholar
  62. Roig FA, Hadad M, Moreno C et al (2014) Hiatos de regeneración del bosque de Araucaria araucana en Patagonia: vinculaciones al uso de tierras y desertificación regional. Zonas áridas 15:326–342Google Scholar
  63. Romme WH, Knight DH (1982) Landscape diversity: the concept applied to Yellowstone Park. Bioscience 32:664–670.  https://doi.org/10.2307/1308816CrossRefGoogle Scholar
  64. Sanguinetti J, Kitzberger T (2009) Araucaria araucana temporal and spatial seedling establishment patterns: masting, seed predation and understory vegetation effects. Rev Chil Hist Nat 82:319–335CrossRefGoogle Scholar
  65. Saunders MR, Wagner RG (2008) Height-diameter models with random coefficients and site variables for tree species of Central Maine. Ann For Sci 65:1–10.  https://doi.org/10.1051/forest:2007086CrossRefGoogle Scholar
  66. Schmidt H (1977) Dinámica de un bosque virgen de Araucaria-Lenga (Chile). Bosque 2:3–11CrossRefGoogle Scholar
  67. Schulman E (1954) Longevity under adversity in conifers. Science 119:396–399.  https://doi.org/10.1126/science.119.3091.396CrossRefPubMedGoogle Scholar
  68. Schulman E (1956) Dendroclimatic changes in semiarid America. University of Arizona Press, TucsonGoogle Scholar
  69. Seoane J (2014) ¿Modelos mixtos (lineales)? Una introducción para el usuario temeroso. Etología 24:15–37Google Scholar
  70. Sinclair JP, Emlen J, Freeman DC (2012) Biased sex ratios in plants: theory and trends. Bot Rev 78:63–86.  https://doi.org/10.1007/s12229-011-9065-0CrossRefGoogle Scholar
  71. Soares P, Tomé M (2002) Height-diameter equation for first rotation eucalypt plantations in Portugal. Forest Ecol Manag 166:99–109.  https://doi.org/10.1016/S0378-1127(01)00674-0CrossRefGoogle Scholar
  72. Stokes M, Smiley T (1968) An introduction to tree-ring dating. University of Chicago Press, ChicagoGoogle Scholar
  73. Suárez ML, Villalba R, Mundo I et al (2015) Sensitivity of Nothofagus dombeyi tree growth to climate changes along a precipitation gradient in northern Patagonia, Argentina. Trees-Struct Funct 29:1053–1067.  https://doi.org/10.1007/s00468-015-1184-5CrossRefGoogle Scholar
  74. Svensson JS, Jeglum JK (2001) Structure and dynamics of an undisturbed old-growth Norway Spruce forest on the rising Bothnian coastline. For Ecol Manag 151:67–79.  https://doi.org/10.1016/S0378-1127(00)00697-6CrossRefGoogle Scholar
  75. Temesgen H, Gadow KV (2004) Generalized height-diameter models – an application for major tree species in complex stands of interior British Columbia. Eur J For Res 123:45–51.  https://doi.org/10.1007/s10342-004-0020-zCrossRefGoogle Scholar
  76. Veblen TT (1982) Regeneration patterns of Araucaria araucana forests in Chile. J Biogeogr 9:11–28.  https://doi.org/10.2307/2844727CrossRefGoogle Scholar
  77. Veblen TT, Kitzberger T, Raffaele E et al (2003) Fire history and vegetation changes in northern Patagonia, Argentina. In: Veblen TT, Baker WL, Montenegro G, Swetnam TW (eds) Fire and climatic changes in temperate ecosystems of the Western Americas ecological studies. Springer-Verlag, New York, pp 265–295CrossRefGoogle Scholar
  78. Venables WN, Ripley BD (2002) Random and mixed effects. In: Modern applied statistics with S. Springer, New York, pp 271–300CrossRefGoogle Scholar
  79. Villalba R, Veblen TT (1997) Regional patterns of tree population age structures in Northern Patagonia: climatic and disturbance influences. J Ecol 85:113–124.  https://doi.org/10.2307/2960643CrossRefGoogle Scholar
  80. Villalba R, Lara A, Masiokas MH et al (2012) Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat Geosci 5:793–798.  https://doi.org/10.1038/ngeo1613CrossRefGoogle Scholar
  81. Wang T, Liang Y, Ren H et al (2004) Age structure of Picea schrenkiana forest along an altitudinal gradient in the central Tianshan Mountains, Northwestern China. For Ecol Manag 196:267–274.  https://doi.org/10.1016/j.foreco.2004.02.063CrossRefGoogle Scholar
  82. Xing P, Zhang QB, Baker PJ (2012) Age and radial growth pattern of four tree species in a subtropical forest of China. Trees-Struct Funct 26:283–290.  https://doi.org/10.1007/s00468-011-0590-6CrossRefGoogle Scholar
  83. Zamorano-Elgueta C, Cayuela L, González-Espinosa M et al (2012) Impacts of cattle on the South American temperate forests: challenges for the conservation of the endangered monkey puzzle tree (Araucaria araucana) in Chile. Biol Conserv 152:110–118.  https://doi.org/10.1016/j.biocon.2012.03.037CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Martín Ariel Hadad
    • 1
    Email author
  • Julieta Gabriela Arco Molina
    • 2
  • Fidel Alejandro Roig
    • 2
    • 3
    • 4
    • 5
  1. 1.Laboratorio de Dendrocronología de Zonas Áridas. CIGEOBIO (CONICET-UNSJ), Gabinete de Geología Ambiental (INGEO-UNSJ)San JuanArgentina
  2. 2.Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA-CCT CONICET-MendozaMendozaArgentina
  3. 3.Facultad de Ciencias Agrarias, Universidad Nacional de CuyoMendozaArgentina
  4. 4.Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Universidad MayorSantiagoChile
  5. 5.ESALQ, Universidade de São PauloPiracicabaBrazil

Personalised recommendations