Advertisement

Cardiac Metabolic Changes in Altered Thyroid States

  • Michael A. PortmanEmail author
Chapter
  • 29 Downloads

Abstract

Thyroid hormones regulate multiple metabolic processes in myocardium that can impact cardiac function and adaptation. These processes are regulated directly by triiodothyronine (T3) or through transcription regulated mainly through nuclear receptors. Early work suggested that metabolism changes secondary to cardiac functional changes and myocyte remodeling. Newer concepts include metabolism as a factor that causes or at least exacerbates heart failure. Energy starvation contributes to myocardial dysfunction and adverse remodeling. Systemic thyroid hormone homeostasis is disrupted during heart failure and during mechanical circulatory support, thereby interfering with normal substrate oxidation and oxidative phosphorylation. Clinical studies have shown that thyroid hormone supplementation in these altered states improves cardiac function. Studies in animal models emulating clinical scenarios with disrupted thyroid homeostasis, particularly following ischemia-reperfusion, demonstrate that thyroid supplementation promotes flux through pyruvate dehydrogenase (PDH) in the heart along with preservation of high-energy phosphate reserves and contractile function.

Keywords

Cardiac metabolism Pyruvate Lactate Substrate oxidation Adenine nucleotide translocator 

References

  1. 1.
    Chowdhury D, Parnell VA, Ojamaa K, Boxer R, Cooper R, Klein I. Usefulness of triiodothyronine (T3) treatment after surgery for complex congenital heart disease in infants and children. Am J Cardiol. 1999;84(9):1107–9. A10.PubMedCrossRefGoogle Scholar
  2. 2.
    Kinugawa K, Long CS, Bristow MR. Expression of TR isoforms in failing human heart. J Clin Endocrinol Metab. 2001;86(10):5089–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Pazos-Moura C, Abel ED, Boers ME, Moura E, Hampton TG, Wang J, et al. Cardiac dysfunction caused by myocardium-specific expression of a mutant thyroid hormone receptor. Circ Res. 2000;86(6):700–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Rodondi N, Newman AB, Vittinghoff E, de Rekeneire N, Satterfield S, Harris TB, et al. Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch Intern Med. 2005;165(21):2460–6.PubMedCrossRefGoogle Scholar
  5. 5.
    Bottomley PA, Panjrath GS, Lai S, Hirsch GA, Wu K, Najjar SS, et al. Metabolic rates of ATP transfer through creatine kinase (CK Flux) predict clinical heart failure events and death. Sci Transl Med. 2013;5(215):215re3.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Bottomley PA, Wu KC, Gerstenblith G, Schulman SP, Steinberg A, Weiss RG. Reduced myocardial creatine kinase flux in human myocardial infarction: an in vivo phosphorus magnetic resonance spectroscopy study. Circulation. 2009;119(14):1918–24.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Weiss RG, Gerstenblith G, Bottomley PA. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc Natl Acad Sci U S A. 2005;102(3):808–13.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Katz LA, Swain JA, Portman MA, Balaban RS. Relation between phosphate metabolites and oxygen consumption of heart in vivo. Am J Physiol Heart Circ Physiol. 1989;256:H265–74.CrossRefGoogle Scholar
  9. 9.
    Zhang J, Duncker DJ, Xu Y, Zhang Y, Path G, Merkle H, et al. Transmural bioenergetic responses of normal myocardium to high workstates. Am J Physiol Heart Circ Physiol. 1995;268(5 Pt 2):H1891–905.CrossRefGoogle Scholar
  10. 10.
    Athea Y, Garnier A, Fortin D, Bahi L, Veksler V, Ventura-Clapier R. Mitochondrial and energetic cardiac phenotype in hypothyroid rat. Relevance to heart failure. Pflugers Arch. 2007;455:431.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Danzi S, Klein I, Portman MA. Effect of triiodothyronine on gene transcription during cardiopulmonary bypass in infants with ventricular septal defect. Am J Cardiol. 2005;95(6):787–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Hyyti OM, Ning XH, Buroker NE, Ge M, Portman MA. Thyroid hormone controls myocardial substrate metabolism through nuclear receptor-mediated and rapid posttranscriptional mechanisms. Am J Physiol Endocrinol Metab. 2006;290(2):E372–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Jansen MS, Cook GA, Song S, Park EA. Thyroid hormone regulates carnitine palmitoyltransferase ialpha gene expression through elements in the promoter and first intron. J Biol Chem. 2000;275(45):34989–97.PubMedCrossRefGoogle Scholar
  14. 14.
    Miyamoto T, Kaneko A, Kakizawa T, Yajima H, Kamijo K, Sekine R, et al. Inhibition of peroxisome proliferator signaling pathways by thyroid hormone receptor. Competitive binding to the response element. J Biol Chem. 1997;272(12):7752–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Ren B, Thelen A, Jump DB. Peroxisome proliferator-activated receptor alpha inhibits hepatic S14 gene transcription. Evidence against the peroxisome proliferator-activated receptor alpha as the mediator of polyunsaturated fatty acid regulation of s14 gene transcription. J Biol Chem. 1996;271(29):17167–73.PubMedCrossRefGoogle Scholar
  16. 16.
    Petty KJ, Desvergne B, Mitsuhashi T, Nikodem VM. Identification of a thyroid hormone response element in the malic enzyme gene. J Biol Chem. 1990;265(13):7395–400.PubMedGoogle Scholar
  17. 17.
    Belke DD, Gloss B, Swanson EA, Dillmann WH. Adeno-associated virus-mediated expression of thyroid hormone receptor isoforms-alpha1 and -beta1 improves contractile function in pressure overload-induced cardiac hypertrophy. Endocrinology. 2007;148(6):2870–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang TC, Cecchin FC, Mahoney P, Portman MA. Corrected QT interval (QTc) prolongation and syncope associated with pseudohypoparathyroidism and hypocalcemia. J Pediatr. 2000;136(3):404–7.PubMedCrossRefGoogle Scholar
  19. 19.
    Esaki T, Suzuki H, Cook M, Shimoji K, Cheng SY, Sokoloff L, et al. Cardiac glucose utilization in mice with mutated alpha- and beta-thyroid hormone receptors. Am J Physiol Endocrinol Metab. 2004;287(6):E1149–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Taegtmeyer H, Young ME, Lopaschuk GD, Abel ED, Brunengraber H, Darley-Usmar V, et al. Assessing cardiac metabolism: a scientific statement From the American Heart Association. Circ Res. 2016;118(10):1659–701.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hyyti OM, Olson AK, Ge M, Ning XH, Buroker NE, Chung Y, et al. Cardioselective dominant-negative thyroid hormone receptor (Delta337T) modulates myocardial metabolism and contractile efficiency. Am J Physiol Endocrinol Metab. 2008;295(2):E420–7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Morrish F, Buroker NE, Ge M, Ning XH, Lopez-Guisa J, Hockenbery D, et al. Thyroid hormone receptor isoforms localize to cardiac mitochondrial matrix with potential for binding to receptor elements on mtDNA. Mitochondrion. 2006;6(3):143–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Weitzel JM, Iwen KA, Seitz HJ. Regulation of mitochondrial biogenesis by thyroid hormone. Exp Physiol. 2003;88(1):121–8.PubMedCrossRefGoogle Scholar
  24. 24.
    McClure TD, Young ME, Taegtmeyer H, Ning XH, Buroker NE, Lopez-Guisa J, et al. Thyroid hormone interacts with PPARalpha and PGC-1 during mitochondrial maturation in sheep heart. Am J Physiol Heart Circ Physiol. 2005;289(5):H2258–64.PubMedCrossRefGoogle Scholar
  25. 25.
    Hyyti OM, Portman MA. Molecular mechanisms of cross-talk between thyroid hormone and peroxisome proliferator activated receptors: focus on the heart. Cardiovasc Drugs Ther. 2006;20(6):463–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Portman MA, Xiao Y, Song Y, Ning XH. Expression of adenine nucleotide translocator parallels maturation of respiratory control in heart in vivo. Am J Phys. 1997;273(4 Pt 2):H1977–83.Google Scholar
  27. 27.
    Portman MA, Xiao Y, Qian K, Tucker RL, Parish SM, Ning XH. Thyroid hormone coordinates respiratory control maturation and adenine nucleotide translocator expression in heart in vivo. Circulation. 2000;102(11):1323–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Portman MA. The adenine nucleotide translocator: regulation and function during myocardial development and hypertrophy. Clin Exp Pharmacol Physiol. 2002;29(4):334–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Portman MA. Adenine nucleotide translocator in heart. Mol Genet Metab. 2000;71(1–2):445–50.PubMedCrossRefGoogle Scholar
  30. 30.
    Ning X, Zhang J, Liu J, Yen Y, Chen S, From A, et al. Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol. 2000;36:282–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Lei J, Nowbar S, Mariash CN, Ingbar DH. Thyroid hormone stimulates Na-K-ATPase activity and its plasma membrane insertion in rat alveolar epithelial cells. Am J Phys Lung Cell Mol Phys. 2003;285(3):L762–72.Google Scholar
  32. 32.
    D’Arezzo S, Incerpi S, Davis FB, Acconcia F, Marino M, Farias RN, et al. Rapid nongenomic effects of 3,5,3′-triiodo-L-thyronine on the intracellular pH of L-6 myoblasts are mediated by intracellular calcium mobilization and kinase pathways. Endocrinology. 2004;145(12):5694–703.PubMedCrossRefGoogle Scholar
  33. 33.
    Davis PJ, Davis FB. Nongenomic actions of thyroid hormone on the heart. Thyroid. 2002;12(6):459–66.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Shih A, Lin HY, Davis FB, Davis PJ. Thyroid hormone promotes serine phosphorylation of p53 by mitogen-activated protein kinase. Biochemistry. 2001;40(9):2870–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Sterling K, Brenner MA. Thyroid hormone action: effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metabolism. 1995;44(2):193–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Sterling K. Direct thyroid hormone activation of mitochondria: identification of adenine nucleotide translocase (AdNT) as the hormone receptor. Trans Assoc Am Phys. 1987;100:284–93.PubMedGoogle Scholar
  37. 37.
    Sugden MC, Langdown ML, Harris RA, Holness MJ. Expression and regulation of pyruvate dehydrogenase kinase isoforms in the developing rat heart and in adulthood: role of thyroid hormone status and lipid supply. Biochem J. 2000;352:731–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Priestman DA, Donald E, Holness MJ, Sugden MC. Different mechanisms underlie the long-term regulation of pyruvate dehydrogenase kinase (PDHK) by tri-iodothyronine in heart and liver. FEBS Lett. 1997;419(1):55–7.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Khoury SF, Hoit BD, Dave V, Pawloski-Dahm CM, Shao Y, Gabel M, et al. Effects of thyroid hormone on left ventricular performance and regulation of contractile and Ca(2+)-cycling proteins in the baboon. Implications for the force-frequency and relaxation-frequency relationships. Circ Res. 1996;79(4):727–35.PubMedCrossRefGoogle Scholar
  40. 40.
    Chang KC, Figueredo VM, Schreur JH, Kariya K, Weiner MW, Simpson PC, et al. Thyroid hormone improves function and Ca2+ handling in pressure overload hypertrophy. Association with increased sarcoplasmic reticulum Ca2+-ATPase and alpha-myosin heavy chain in rat hearts. J Clin Invest. 1997;100(7):1742–9.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Muller A, Zuidwijk MJ, Simonides WS, van Hardeveld C. Modulation of SERCA2 expression by thyroid hormone and norepinephrine in cardiocytes: role of contractility. Am J Phys. 1997;272(4 Pt 2):H1876–85.Google Scholar
  42. 42.
    Wang YG, Dedkova EN, Fiening JP, Ojamaa K, Blatter LA, Lipsius SL. Acute exposure to thyroid hormone increases Na+ current and intracellular Ca2+ in cat atrial myocytes. J Physiol. 2003;546(Pt 2):491–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Krueger JJ, Ning XH, Argo BM, Hyyti O, Portman MA. Triidothyronine and epinephrine rapidly modify myocardial substrate selection: a (13)C isotopomer analysis. Am J Physiol Endocrinol Metab. 2001;281(5):E983–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Bettendorf M, Schmidt KG, Tiefenbacher U, Grulich-Henn J, Heinrich UE, Schonberg DK. Transient secondary hypothyroidism in children after cardiac surgery. Pediatr Res. 1997;41(3):375–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Plumpton K, Haas NA. Identifying infants at risk of marked thyroid suppression post-cardiopulmonary bypass. Intensive Care Med. 2005;31(4):581–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Ahuja P, Zhao P, Angelis E, Ruan H, Korge P, Olson A, et al. Myc controls transcriptional regulation of cardiac metabolism and mitochondrial biogenesis in response to pathological stress in mice. J Clin Invest. 2010;120(5):1494–505.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Priest JR, Slee A, Olson AK, Ledee D, Morrish F, Portman MA. Triiodothyronine supplementation and cytokines during cardiopulmonary bypass in infants and children. J Thorac Cardiovasc Surg. 2012;144(4):938–43. e2.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Marwali EM, Caesa P, Darmaputri S, Sani AA, Roebiono PS, Fakhri D, et al. Oral triiodothyronine supplementation decreases low cardiac output syndrome after pediatric cardiac surgery. Pediatr Cardiol. 2019;40:1238.PubMedCrossRefGoogle Scholar
  49. 49.
    Marwali EM, Boom CE, Budiwardhana N, Fakhri D, Roebiono PS, Santoso A, et al. Oral Triiodothyronine for infants and children undergoing cardiopulmonary bypass. Ann Thorac Surg. 2017;104(2):688–95.PubMedCrossRefGoogle Scholar
  50. 50.
    Olson AK, Bouchard B, Ning XH, Isern N, Rosiers CD, Portman MA. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2012;302(5):H1086–93.PubMedCrossRefGoogle Scholar
  51. 51.
    Files MD, Kajimoto M, O’Kelly Priddy CM, Ledee DR, Xu C, Des Rosiers C, et al. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization. J Am Heart Assoc. 2014;3(2):e000680.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kajimoto M, Ledee DR, Xu C, Kajimoto H, Isern NG, Portman MA. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation. Circ J. 2014;78:2867.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kajimoto M, Priddy CM, Ledee DR, Xu C, Isern N, Olson AK, et al. Effects of continuous triiodothyronine infusion on the tricarboxylic acid cycle in the normal immature swine heart under extracorporeal membrane oxygenation in vivo. Am J Physiol Heart Circ Physiol. 2014;306(8):H1164–70.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Liu Q, Clanachan AS, Lopaschuk GD. Acute effects of triiodothyronine on glucose and fatty acid metabolism during reperfusion of ischemic rat hearts. Am J Phys. 1998;275(3 Pt 1):E392–9.Google Scholar
  55. 55.
    Griffin JL, White LT, Lewandowski ED. Substrate-dependent proton load and recovery of stunned hearts during pyruvate dehydrogenase stimulation. Am J Physiol Heart Circ Physiol. 2000;279(1):H361–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Kudej RK, White LT, Kudej AB, Vatner SF, Lewandowski ED. Brief increase in carbohydrate oxidation after reperfusion reverses myocardial stunning in conscious pigs. Circulation. 2002;106(22):2836–41.PubMedCrossRefGoogle Scholar
  57. 57.
    Olson AK, Hyyti OM, Cohen GA, Ning XH, Sadilek M, Isern N, et al. Superior cardiac function via anaplerotic pyruvate in the immature swine heart after cardiopulmonary bypass and reperfusion. Am J Physiol Heart Circ Physiol. 2008;295(6):H2315–20.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Russell RR 3rd, Taegtmeyer H. Pyruvate carboxylation prevents the decline in contractile function of rat hearts oxidizing acetoacetate. Am J Phys. 1991;261(6 Pt 2):H1756–62.Google Scholar
  59. 59.
    Diakos NA, Navankasattusas S, Abel ED, Rutter J, McCreath L, Ferrin P, et al. Evidence of glycolysis up-regulation and pyruvate mitochondrial oxidation mismatch during mechanical unloading of the failing human heart: implications for cardiac reloading and conditioning. JACC Basic Transl Sci. 2016;1(6):432–44.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Priddy CM, Kajimoto M, Ledee DR, Bouchard B, Isern N, Olson AK, et al. Myocardial oxidative metabolism and protein synthesis during mechanical circulatory support by extracorporeal membrane oxygenation. Am J Physiol Heart Circ Physiol. 2013;304(3):H406–14.PubMedCrossRefGoogle Scholar
  61. 61.
    Ledee DR, Kajimoto M, O’Kelly Priddy CM, Olson AK, Isern N, Robillard-Frayne I, et al. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model. Am J Physiol Heart Circ Physiol. 2015;309(1):H137–46.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Kajimoto M, Priddy CMO, Ledee DR, Xu C, Isern N, Olson AK, et al. Myocardial reloading after extracorporeal membrane oxygenation alters substrate metabolism while promoting protein synthesis. J Am Heart Assoc. 2013;2(4):e000106.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Kajimoto M, O'Kelly Priddy CM, Ledee DR, Xu C, Isern N, Olson AK, et al. Extracorporeal membrane oxygenation promotes long chain fatty acid oxidation in the immature swine heart in vivo. J Mol Cell Cardiol. 2013;62C:144–52.CrossRefGoogle Scholar
  64. 64.
    Kajimoto M, Ledee DR, Isern NG, Portman MA. Right ventricular metabolism during venoarterial extracorporeal membrane oxygenation in immature swine heart in vivo. Am J Physiol Heart Circ Physiol. 2017;312(4):H721–H7.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Washington and Seattle Children’s Research InstituteSeattleUSA

Personalised recommendations