Advertisement

Physiological and Pathological Cardiac Remodeling in Altered Thyroid Hormone States

  • Viswanathan Rajagopalan
  • A. Martin GerdesEmail author
Chapter
  • 32 Downloads

Abstract

The heart responds to diverse stimuli by restructuring itself. Global remodeling is regulated by changes at the tissue, cellular, interstitial, biochemical, genetic and epigenetic levels. The transition from physiological compensation to decompensation has been a target for interventional strategies. Thyroid hormones (THs) also play a critical role in guiding this structural rearrangement. A balance in TH levels (both systemic and cellular) is vital for the adaptive regulation of remodeling, with hormone imbalance leading to maladaptive changes. TH imbalance can result either primarily from changes in hormone release from the thyroid gland or secondarily from altered bioavailability at the peripheral organ level. Recent findings indicate that numerous cardiovascular diseases suffer from aberrant changes in TH-based molecular mechanisms resulting in remodeling at the cellular and organ levels. This chapter discusses mechanisms and significance of physiological and pathological cardiac remodeling processes in altered TH states.

Keywords

Remodeling Thyroid hormone Cardiac hypertrophy Ventricular dilation Myocyte shape Heart failure 

References

  1. 1.
    Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35(3):569–82.PubMedCrossRefGoogle Scholar
  2. 2.
    Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev. 1999;79(1):215–62.  https://doi.org/10.1152/physrev.1999.79.1.215.PubMedCrossRefGoogle Scholar
  3. 3.
    Tham YK, Bernardo BC, Ooi JY, Weeks KL, McMullen JR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol. 2015;89(9):1401–38.  https://doi.org/10.1007/s00204-015-1477-x.PubMedCrossRefGoogle Scholar
  4. 4.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA. Controversies in ventricular remodelling. Lancet. 2006;367(9507):356–67.  https://doi.org/10.1016/S0140-6736(06)68074-4.PubMedCrossRefGoogle Scholar
  5. 5.
    Tamura T, Said S, Harris J, Lu W, Gerdes AM. Reverse remodeling of cardiac myocyte hypertrophy in hypertension and failure by targeting of the renin-angiotensin system. Circulation. 2000;102(2):253–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Kao DP, Lowes BD, Gilbert EM, Minobe W, Epperson LE, Meyer LK, et al. Therapeutic molecular phenotype of beta-blocker-associated reverse-remodeling in nonischemic dilated cardiomyopathy. Circ Cardiovasc Genet. 2015;8(2):270–83.  https://doi.org/10.1161/CIRCGENETICS.114.000767.PubMedCrossRefGoogle Scholar
  7. 7.
    Wohlschlaeger J, Schmitz KJ, Schmid C, Schmid KW, Keul P, Takeda A, et al. Reverse remodeling following insertion of left ventricular assist devices (LVAD): a review of the morphological and molecular changes. Cardiovasc Res. 2005;68(3):376–86.  https://doi.org/10.1016/j.cardiores.2005.06.030.PubMedCrossRefGoogle Scholar
  8. 8.
    Park JH, Negishi K, Grimm RA, Popovic Z, Stanton T, Wilkoff BL, et al. Echocardiographic predictors of reverse remodeling after cardiac resynchronization therapy and subsequent events. Circ Cardiovasc Imaging. 2013;6(6):864–72.  https://doi.org/10.1161/CIRCIMAGING.112.000026.PubMedCrossRefGoogle Scholar
  9. 9.
    Takeda K, Taniguchi K, Shudo Y, Kainuma S, Hamada S, Matsue H, et al. Mechanism of beneficial effects of restrictive mitral annuloplasty in patients with dilated cardiomyopathy and functional mitral regurgitation. Circulation. 2010;122(11 Suppl):S3–9.  https://doi.org/10.1161/CIRCULATIONAHA.109.927855.PubMedCrossRefGoogle Scholar
  10. 10.
    Stulak JM, Suri RM, Dearani JA, Burkhart HM, Sundt TM III, Enriquez-Sarano M, et al. Does early surgical intervention improve left ventricular mass regression after mitral valve repair for leaflet prolapse? J Thorac Cardiovasc Surg. 2011;141(1):122–9.  https://doi.org/10.1016/j.jtcvs.2010.08.068.PubMedCrossRefGoogle Scholar
  11. 11.
    Gerdes AM, Clark LC, Capasso JM. Regression of cardiac hypertrophy after closing an aortocaval fistula in rats. Am J Phys. 1995;268(6 Pt 2):H2345–51.  https://doi.org/10.1152/ajpheart.1995.268.6.H2345.CrossRefGoogle Scholar
  12. 12.
    Wong M, Staszewsky L, Latini R, Barlera S, Volpi A, Chiang YT, et al. Valsartan benefits left ventricular structure and function in heart failure: Val-HeFT echocardiographic study. J Am Coll Cardiol. 2002;40(5):970–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Birks EJ, Tansley PD, Hardy J, George RS, Bowles CT, Burke M, et al. Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med. 2006;355(18):1873–84.  https://doi.org/10.1056/NEJMoa053063.PubMedCrossRefGoogle Scholar
  14. 14.
    Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: a meta-analytic approach. J Am Coll Cardiol. 2010;56(5):392–406.  https://doi.org/10.1016/j.jacc.2010.05.011.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Rajagopalan V, Gerdes AM. Role of thyroid hormones in ventricular remodeling. Curr Heart Fail Rep. 2015;12(2):141–9.  https://doi.org/10.1007/s11897-014-0246-0.CrossRefGoogle Scholar
  16. 16.
    Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71(16):1781–96.  https://doi.org/10.1016/j.jacc.2018.02.045.CrossRefGoogle Scholar
  17. 17.
    Klein I, Danzi S. Thyroid disease and the heart. Circulation. 2007;116(15):1725–35.  https://doi.org/10.1161/CIRCULATIONAHA.106.678326.CrossRefGoogle Scholar
  18. 18.
    Lortet S, Zimmer HG, Rossi A. Inotropic response of the rat heart during development and regression of triiodothyronine-induced hypertrophy. J Cardiovasc Pharmacol. 1989;14(5):707–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Zierhut W, Zimmer HG. Differential effects of triiodothyronine on rat left and right ventricular function and the influence of metoprolol. J Mol Cell Cardiol. 1989;21(6):617–24.PubMedCrossRefGoogle Scholar
  20. 20.
    Gerdes AM, Moore JA, Bishop SP. Failure of propranolol to prevent chronic hyperthyroid induced cardiac hypertrophy and multifocal cellular necrosis in the rat. Can J Cardiol. 1985;1(5):340–5.PubMedGoogle Scholar
  21. 21.
    Weltman NY, Wang D, Redetzke RA, Gerdes AM. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function. PLoS One. 2012;7(10):e46655.  https://doi.org/10.1371/journal.pone.0046655.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Campbell SE, Gerdes AM. Regional changes in myocyte size during the reversal of thyroid-induced cardiac hypertrophy. J Mol Cell Cardiol. 1988;20(5):379–87.PubMedCrossRefGoogle Scholar
  23. 23.
    Olivieri A, Stazi MA, Mastroiacovo P, Fazzini C, Medda E, Spagnolo A, et al. A population-based study on the frequency of additional congenital malformations in infants with congenital hypothyroidism: data from the Italian Registry for Congenital Hypothyroidism (1991-1998). J Clin Endocrinol Metab. 2002;87(2):557–62.  https://doi.org/10.1210/jcem.87.2.8235.PubMedCrossRefGoogle Scholar
  24. 24.
    Forhead AJ, Fowden AL. Thyroid hormones in fetal growth and prepartum maturation. J Endocrinol. 2014;221(3):R87–R103.  https://doi.org/10.1530/JOE-14-0025.PubMedCrossRefGoogle Scholar
  25. 25.
    Liu Z, Gerdes AM. Influence of hypothyroidism and the reversal of hypothyroidism on hemodynamics and cell size in the adult rat heart. J Mol Cell Cardiol. 1990;22(12):1339–48.PubMedCrossRefGoogle Scholar
  26. 26.
    Liu Y, Sherer BA, Redetzke RA, Gerdes AM. Regulation of arteriolar density in adult myocardium during low thyroid conditions. Vasc Pharmacol. 2010;52(3–4):146–50.  https://doi.org/10.1016/j.vph.2009.10.003.CrossRefGoogle Scholar
  27. 27.
    Chen YF, Redetzke RA, Said S, Beyer AJ, Gerdes AM. Changes in left ventricular function and remodeling after myocardial infarction in hypothyroid rats. Am J Physiol Heart Circ Physiol. 2010;298(1):H259–62.  https://doi.org/10.1152/ajpheart.00755.2009.PubMedCrossRefGoogle Scholar
  28. 28.
    Tang YD, Kuzman JA, Said S, Anderson BE, Wang X, Gerdes AM. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation. 2005;112(20):3122–30.  https://doi.org/10.1161/CIRCULATIONAHA.105.572883.CrossRefGoogle Scholar
  29. 29.
    Zhang Y, Dedkov EI, Teplitsky D, Weltman NY, Pol CJ, Rajagopalan V, et al. Both hypothyroidism and hyperthyroidism increase atrial fibrillation inducibility in rats. Circ Arrhythm Electrophysiol. 2013;6(5):952–9.  https://doi.org/10.1161/CIRCEP.113.000502.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jabbar A, Pingitore A, Pearce SH, Zaman A, Iervasi G, Razvi S. Thyroid hormones and cardiovascular disease. Nat Rev Cardiol. 2017;14(1):39–55.  https://doi.org/10.1038/nrcardio.2016.174.CrossRefGoogle Scholar
  31. 31.
    Gerdes AM. Restoration of thyroid hormone balance: a game changer in the treatment of heart failure? Am J Physiol Heart Circ Physiol. 2015;308(1):H1–10.  https://doi.org/10.1152/ajpheart.00704.2014.CrossRefGoogle Scholar
  32. 32.
    Gerdes AM, Iervasi G. Thyroid replacement therapy and heart failure. Circulation. 2010;122(4):385–93.  https://doi.org/10.1161/CIRCULATIONAHA.109.917922.CrossRefGoogle Scholar
  33. 33.
    Zhang K, Meng X, Wang W, Zheng J, An S, Wang S, et al. Prognostic value of free triiodothyronine level in patients with hypertrophic obstructive cardiomyopathy. J Clin Endocrinol Metab. 2018;103(3):1198–205.  https://doi.org/10.1210/jc.2017-02386.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang W, Guan H, Fang W, Zhang K, Gerdes AM, Iervasi G, et al. Free triiodothyronine level correlates with myocardial injury and prognosis in idiopathic dilated cardiomyopathy: evidence from cardiac MRI and SPECT/PET imaging. Sci Rep. 2016;6:39811.  https://doi.org/10.1038/srep39811.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Iervasi G, Pingitore A, Landi P, Raciti M, Ripoli A, Scarlattini M, et al. Low-T3 syndrome: a strong prognostic predictor of death in patients with heart disease. Circulation. 2003;107(5):708–13.CrossRefGoogle Scholar
  36. 36.
    Rodondi N, den Elzen WP, Bauer DC, Cappola AR, Razvi S, Walsh JP, et al. Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA. 2010;304(12):1365–74.  https://doi.org/10.1001/jama.2010.1361.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Wang W, Guan H, Gerdes AM, Iervasi G, Yang Y, Tang YD. Thyroid status, cardiac function, and mortality in patients with idiopathic dilated cardiomyopathy. J Clin Endocrinol Metab. 2015;100(8):3210–8.  https://doi.org/10.1210/jc.2014-4159.CrossRefGoogle Scholar
  38. 38.
    Marwali EM, Boom CE, Budiwardhana N, Fakhri D, Roebiono PS, Santoso A, et al. Oral triiodothyronine for infants and children undergoing cardiopulmonary bypass. Ann Thorac Surg. 2017;104(2):688–95.  https://doi.org/10.1016/j.athoracsur.2017.01.001.CrossRefGoogle Scholar
  39. 39.
    Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, et al. Thyroid function in heart failure and impact on mortality. JACC Heart Fail. 2013;1(1):48–55.  https://doi.org/10.1016/j.jchf.2012.10.004.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Passino C, Pingitore A, Landi P, Fontana M, Zyw L, Clerico A, et al. Prognostic value of combined measurement of brain natriuretic peptide and triiodothyronine in heart failure. J Card Fail. 2009;15(1):35–40.  https://doi.org/10.1016/j.cardfail.2008.08.008.CrossRefGoogle Scholar
  41. 41.
    Donzelli R, Colligiani D, Kusmic C, Sabatini M, Lorenzini L, Accorroni A, et al. Effect of hypothyroidism and hyperthyroidism on tissue thyroid hormone concentrations in rat. Eur Thyroid J. 2016;5(1):27–34.  https://doi.org/10.1159/000443523.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Weltman NY, Ojamaa K, Savinova OV, Chen YF, Schlenker EH, Zucchi R, et al. Restoration of cardiac tissue thyroid hormone status in experimental hypothyroidism: a dose-response study in female rats. Endocrinology. 2013;154(7):2542–52.  https://doi.org/10.1210/en.2012-2087.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Weltman NY, Pol CJ, Zhang Y, Wang Y, Koder A, Raza S, et al. Long-term physiological T3 supplementation in hypertensive heart disease in rats. Am J Physiol Heart Circ Physiol. 2015;309(6):H1059–65.  https://doi.org/10.1152/ajpheart.00431.2015.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Weltman NY, Ojamaa K, Schlenker EH, Chen YF, Zucchi R, Saba A, et al. Low-dose T(3) replacement restores depressed cardiac T(3) levels, preserves coronary microvasculature and attenuates cardiac dysfunction in experimental diabetes mellitus. Mol Med. 2014;20:302–12.  https://doi.org/10.2119/molmed.2013.00040.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pol CJ, Muller A, Zuidwijk MJ, van Deel ED, Kaptein E, Saba A, et al. Left-ventricular remodeling after myocardial infarction is associated with a cardiomyocyte-specific hypothyroid condition. Endocrinology. 2011;152(2):669–79.  https://doi.org/10.1210/en.2010-0431.CrossRefGoogle Scholar
  46. 46.
    Klemperer JD, Ojamaa K, Klein I. Thyroid hormone therapy in cardiovascular disease. Prog Cardiovasc Dis. 1996;38(4):329–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Pingitore A, Galli E, Barison A, Iervasi A, Scarlattini M, Nucci D, et al. Acute effects of triiodothyronine (T3) replacement therapy in patients with chronic heart failure and low-T3 syndrome: a randomized, placebo-controlled study. J Clin Endocrinol Metab. 2008;93(4):1351–8.  https://doi.org/10.1210/jc.2007-2210.CrossRefGoogle Scholar
  48. 48.
    Forini F, Lionetti V, Ardehali H, Pucci A, Cecchetti F, Ghanefar M, et al. Early long-term L-T3 replacement rescues mitochondria and prevents ischemic cardiac remodelling in rats. J Cell Mol Med. 2011;15(3):514–24.  https://doi.org/10.1111/j.1582-4934.2010.01014.x.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Rajagopalan V, Zhang Y, Ojamaa K, Chen YF, Pingitore A, Pol CJ, et al. Safe oral triiodo-L-thyronine therapy protects from post-infarct cardiac dysfunction and arrhythmias without cardiovascular adverse effects. PLoS One. 2016;11(3):e0151413.  https://doi.org/10.1371/journal.pone.0151413.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zhang K, Tang YD, Zhang Y, Ojamaa K, Li Y, Saini AS, et al. Comparison of therapeutic triiodothyronine versus metoprolol in the treatment of myocardial infarction in rats. Thyroid. 2018;28(6):799–810.  https://doi.org/10.1089/thy.2017.0544.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Pantos C, Mourouzis I, Tsagoulis N, Markakis K, Galanopoulos G, Roukounakis N, et al. Thyroid hormone at supra-physiological dose optimizes cardiac geometry and improves cardiac function in rats with old myocardial infarction. J Physiol Pharmacol. 2009;60(3):49–56.Google Scholar
  52. 52.
    Rajagopalan V, Zhang Y, Pol C, Costello C, Seitter S, Lehto A, et al. Modified low-dose triiodo-L-thyronine therapy safely improves function following myocardial ischemia-reperfusion injury. Front Physiol. 2017;8:225.  https://doi.org/10.3389/fphys.2017.00225.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Pantos C, Mourouzis I, Cokkinos DV. Rebuilding the post-infarcted myocardium by activating ‘physiologic’ hypertrophic signaling pathways: the thyroid hormone paradigm. Heart Fail Rev. 2010;15(2):143–54.  https://doi.org/10.1007/s10741-008-9111-0.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV. Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol. 2008;103(4):308–18.  https://doi.org/10.1007/s00395-008-0697-0.CrossRefGoogle Scholar
  55. 55.
    Pantos C, Mourouzis I, Saranteas T, Clave G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia-reperfusion? Basic Res Cardiol. 2009;104(1):69–77.  https://doi.org/10.1007/s00395-008-0758-4.CrossRefGoogle Scholar
  56. 56.
    Pantos CI, Malliopoulou VA, Mourouzis IS, Karamanoli EP, Paizis IA, Steimberg N, et al. Long-term thyroxine administration protects the heart in a pattern similar to ischemic preconditioning. Thyroid. 2002;12(4):325–9.  https://doi.org/10.1089/10507250252949469.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P, Forini F. Cardioprotection and thyroid hormones. Heart Fail Rev. 2016;21(4):391–9.  https://doi.org/10.1007/s10741-016-9545-8.CrossRefGoogle Scholar
  58. 58.
    Khalife WI, Tang YD, Kuzman JA, Thomas TA, Anderson BE, Said S, et al. Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2005;289(6):H2409–15.  https://doi.org/10.1152/ajpheart.00483.2005.CrossRefGoogle Scholar
  59. 59.
    Yao J, Eghbali M. Decreased collagen mRNA and regression of cardiac fibrosis in the ventricular myocardium of the tight skin mouse following thyroid hormone treatment. Cardiovasc Res. 1992;26(6):603–7.PubMedCrossRefGoogle Scholar
  60. 60.
    Chen WJ, Lin KH, Lee YS. Molecular characterization of myocardial fibrosis during hypothyroidism: evidence for negative regulation of the pro-alpha1(I) collagen gene expression by thyroid hormone receptor. Mol Cell Endocrinol. 2000;162(1–2):45–55.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Lee HW, Klein LE, Raser J, Eghbali-Webb M. An activator protein-1 (AP-1) response element on pro alpha1(l) collagen gene is necessary for thyroid hormone-induced inhibition of promoter activity in cardiac fibroblasts. J Mol Cell Cardiol. 1998;30(11):2495–506.  https://doi.org/10.1006/jmcc.1998.0811.PubMedCrossRefGoogle Scholar
  62. 62.
    Kuzman JA, Tang Y, Vogelsang KA, Said S, Anderson BE, Morkin E, et al. Thyroid hormone analog, diiodothyropropionic acid (DITPA), exerts beneficial effects on chamber and cellular remodeling in cardiomyopathic hamsters. Can J Physiol Pharmacol. 2007;85(3–4):311–8.  https://doi.org/10.1139/y07-011.PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas TA, Kuzman JA, Anderson BE, Andersen SM, Schlenker EH, Holder MS, et al. Thyroid hormones induce unique and potentially beneficial changes in cardiac myocyte shape in hypertensive rats near heart failure. Am J Physiol Heart Circ Physiol. 2005;288(5):H2118–22.  https://doi.org/10.1152/ajpheart.01000.2004.CrossRefGoogle Scholar
  64. 64.
    Novitzky D, Cooper DK. Thyroid hormone and the stunned myocardium. J Endocrinol. 2014;223(1):R1–8.  https://doi.org/10.1530/JOE-14-0389.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Files MD, Kajimoto M, O'Kelly Priddy CM, Ledee DR, Xu C, Des Rosiers C, et al. Triiodothyronine facilitates weaning from extracorporeal membrane oxygenation by improved mitochondrial substrate utilization. J Am Heart Assoc. 2014;3(2):e000680.  https://doi.org/10.1161/JAHA.113.000680.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Talwar S, Bhoje A, Khadagawat R, Chaturvedi P, Sreenivas V, Makhija N, et al. Oral thyroxin supplementation in infants undergoing cardiac surgery: a double-blind placebo-controlled randomized clinical trial. J Thorac Cardiovasc Surg. 2018;156(3):1209–17.e3.  https://doi.org/10.1016/j.jtcvs.2018.05.044.PubMedCrossRefGoogle Scholar
  67. 67.
    Gerdes AM. Cardiomyocyte ultrastructure. Muscle: fundamental biology and mechanisms of disease, 1st ed. Elsevier Inc.; 2012.Google Scholar
  68. 68.
    Campbell SE, Korecky B, Rakusan K. Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ Res. 1991;68(4):984–96.PubMedCrossRefGoogle Scholar
  69. 69.
    Li F, McNelis MR, Lustig K, Gerdes AM. Hyperplasia and hypertrophy of chicken cardiac myocytes during posthatching development. Am J Phys. 1997;273(2 Pt 2):R518–26.  https://doi.org/10.1152/ajpregu.1997.273.2.R518.CrossRefGoogle Scholar
  70. 70.
    Li F, Wang X, Capasso JM, Gerdes AM. Rapid transition of cardiac myocytes from hyperplasia to hypertrophy during postnatal development. J Mol Cell Cardiol. 1996;28(8):1737–46.  https://doi.org/10.1006/jmcc.1996.0163.PubMedCrossRefGoogle Scholar
  71. 71.
    Grant C, Greene DG, Bunnell IL. Left ventricular enlargement and hypertrophy. A clinical and angiocardiographic study. Am J Med. 1965;39(6):895–904.PubMedCrossRefGoogle Scholar
  72. 72.
    Grossman W, Jones D, McLaurin LP. Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest. 1975;56(1):56–64.  https://doi.org/10.1172/JCI108079.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Gerdes AM, Moore JA, Hines JM, Kirkland PA, Bishop SP. Regional differences in myocyte size in normal rat heart. Anat Rec. 1986;215(4):420–6.  https://doi.org/10.1002/ar.1092150414.PubMedCrossRefGoogle Scholar
  74. 74.
    Gerdes AM. Cardiac myocyte remodeling in hypertrophy and progression to failure. J Card Fail. 2002;8(6 Suppl):S264–8.  https://doi.org/10.1054/jcaf.2002.129280.PubMedCrossRefGoogle Scholar
  75. 75.
    Zimmer HG, Gerdes AM, Lortet S, Mall G. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J Mol Cell Cardiol. 1990;22(11):1231–43.PubMedCrossRefGoogle Scholar
  76. 76.
    Kajstura J, Zhang X, Liu Y, Szoke E, Cheng W, Olivetti G, et al. The cellular basis of pacing-induced dilated cardiomyopathy. Myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation. 1995;92(8):2306–17.PubMedCrossRefGoogle Scholar
  77. 77.
    Kramer CM, Rogers WJ, Park CS, Seibel PS, Shaffer A, Theobald TM, et al. Regional myocyte hypertrophy parallels regional myocardial dysfunction during post-infarct remodeling. J Mol Cell Cardiol. 1998;30(9):1773–8.  https://doi.org/10.1006/jmcc.1998.0741.PubMedCrossRefGoogle Scholar
  78. 78.
    Gerdes AM, Kellerman SE, Moore JA, Muffly KE, Clark LC, Reaves PY, et al. Structural remodeling of cardiac myocytes in patients with ischemic cardiomyopathy. Circulation. 1992;86(2):426–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Zafeiridis A, Jeevanandam V, Houser SR, Margulies KB. Regression of cellular hypertrophy after left ventricular assist device support. Circulation. 1998;98(7):656–62.PubMedCrossRefGoogle Scholar
  80. 80.
    Gerdes AM. How to improve the overall quality of cardiac morphometric data. Am J Physiol Heart Circ Physiol. 2015;309(1):H9–H14.  https://doi.org/10.1152/ajpheart.00232.2015.PubMedCrossRefGoogle Scholar
  81. 81.
    Gerdes AM. The use of isolated myocytes to evaluate myocardial remodeling. Trends Cardiovasc Med. 1992;2(4):152–5.  https://doi.org/10.1016/1050-1738(92)90023-L.PubMedCrossRefGoogle Scholar
  82. 82.
    Gerdes AM, Pingitore A. Assessment of cardiomyocyte size. Manual of research techniques in cardiovascular medicine. Oxford: Wiley; 2014.Google Scholar
  83. 83.
    Gerdes AM, Holder MS. Cardiac myocyte structural remodeling. In: Greenberg B, editor. Cardiac remodeling mechanisms and treatment. 1st ed. Boca Raton: CRC Press; 2005.Google Scholar
  84. 84.
    Tamura T, Onodera T, Said S, Gerdes AM. Correlation of myocyte lengthening to chamber dilation in the spontaneously hypertensive heart failure (SHHF) rat. J Mol Cell Cardiol. 1998;30(11):2175–81.  https://doi.org/10.1006/jmcc.1998.0775.PubMedCrossRefGoogle Scholar
  85. 85.
    Goktepe S, Abilez OJ, Parker KK, Kuhl E. A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J Theor Biol. 2010;265(3):433–42.  https://doi.org/10.1016/j.jtbi.2010.04.023.PubMedCrossRefGoogle Scholar
  86. 86.
    Wang VY, Hussan JR, Yousefi H, Bradley CP, Hunter PJ, Nash MP. Modelling cardiac tissue growth and remodelling. J Elast. 2017;129(1–2):283–305.CrossRefGoogle Scholar
  87. 87.
    Li M, Iismaa SE, Naqvi N, Nicks A, Husain A, Graham RM. Thyroid hormone action in postnatal heart development. Stem Cell Res. 2014;13(3 Pt B):582–91.  https://doi.org/10.1016/j.scr.2014.07.001.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gerdes AM, Kriseman J, Bishop SP. Changes in myocardial cell size and number during the development and reversal of hyperthyroidism in neonatal rats. Lab Invest. 1983;48(5):598–602.PubMedGoogle Scholar
  89. 89.
    Gerdes AM, Moore JA, Hines JM. Regional changes in myocyte size and number in propranolol-treated hyperthyroid rats. Lab Invest. 1987;57(6):708–13.PubMedGoogle Scholar
  90. 90.
    Bai SL, Campbell SE, Moore JA, Morales MC, Gerdes AM. Influence of age, growth, and sex on cardiac myocyte size and number in rats. Anat Rec. 1990;226(2):207–12.  https://doi.org/10.1002/ar.1092260210.PubMedCrossRefGoogle Scholar
  91. 91.
    Schaub MC, Hefti MA, Harder BA, Eppenberger HM. Triiodothyronine restricts myofibrillar growth and enhances beating frequency in cultured adult rat cardiomyocytes. Basic Res Cardiol. 1998;93(5):391–5.PubMedCrossRefGoogle Scholar
  92. 92.
    Shao Q, Cheng HJ, Callahan MF, Kitzman DW, Li WM, Cheng CP. Overexpression myocardial inducible nitric oxide synthase exacerbates cardiac dysfunction and beta-adrenergic desensitization in experimental hypothyroidism. Int J Cardiol. 2016;204:229–41.  https://doi.org/10.1016/j.ijcard.2015.11.040.PubMedCrossRefGoogle Scholar
  93. 93.
    Chen YF, Weltman NY, Li X, Youmans S, Krause D, Gerdes AM. Improvement of left ventricular remodeling after myocardial infarction with eight weeks L-thyroxine treatment in rats. J Transl Med. 2013;11:40.  https://doi.org/10.1186/1479-5876-11-40.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Savinova OV, Gerdes AM. Myocyte changes in heart failure. Heart Fail Clin. 2012;8(1):1–6.  https://doi.org/10.1016/j.hfc.2011.08.004.PubMedCrossRefGoogle Scholar
  95. 95.
    Gerdes AM, Ojamaa K. Thyroid hormone and cardioprotection. Compr Physiol. 2016;6(3):1199–219.  https://doi.org/10.1002/cphy.c150012.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Re A, Nanni S, Aiello A, Granata S, Colussi C, Campostrini G, et al. Anacardic acid and thyroid hormone enhance cardiomyocytes production from undifferentiated mouse ES cells along functionally distinct pathways. Endocrine. 2016;53(3):681–8.  https://doi.org/10.1007/s12020-015-0751-2.PubMedCrossRefGoogle Scholar
  97. 97.
    Lee YK, Ng KM, Chan YC, Lai WH, Au KW, Ho CY, et al. Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway. Mol Endocrinol. 2010;24(9):1728–36.  https://doi.org/10.1210/me.2010-0032.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Jackman C, Li H, Bursac N. Long-term contractile activity and thyroid hormone supplementation produce engineered rat myocardium with adult-like structure and function. Acta Biomater. 2018;78:98–110.  https://doi.org/10.1016/j.actbio.2018.08.003.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Schwan J, Kwaczala AT, Ryan TJ, Bartulos O, Ren Y, Sewanan LR, et al. Anisotropic engineered heart tissue made from laser-cut decellularized myocardium. Sci Rep. 2016;6:32068.  https://doi.org/10.1038/srep32068.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, et al. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol. 2014;72:296–304.  https://doi.org/10.1016/j.yjmcc.2014.04.005.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, et al. Proteomic analysis of human pluripotent stem cell-derived, fetal, and adult ventricular cardiomyocytes reveals pathways crucial for cardiac metabolism and maturation. Circ Cardiovasc Genet. 2015;8(3):427–36.  https://doi.org/10.1161/CIRCGENETICS.114.000918.PubMedCrossRefGoogle Scholar
  102. 102.
    Naito H, Melnychenko I, Didie M, Schneiderbanger K, Schubert P, Rosenkranz S, et al. Optimizing engineered heart tissue for therapeutic applications as surrogate heart muscle. Circulation. 2006;114(1 Suppl):I72–8.  https://doi.org/10.1161/CIRCULATIONAHA.105.001560.PubMedCrossRefGoogle Scholar
  103. 103.
    Birket MJ, Ribeiro MC, Kosmidis G, Ward D, Leitoguinho AR, van de Pol V, et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep. 2015;13(4):733–45.  https://doi.org/10.1016/j.celrep.2015.09.025.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, et al. Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res. 2017;121(12):1323–30.  https://doi.org/10.1161/CIRCRESAHA.117.311920.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128(4):388–400.  https://doi.org/10.1161/CIRCULATIONAHA.113.001878.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Xie M, Burchfield JS, Hill JA. Pathological ventricular remodeling: therapies: part 2 of 2. Circulation. 2013;128(9):1021–30.  https://doi.org/10.1161/CIRCULATIONAHA.113.001879.PubMedCrossRefGoogle Scholar
  107. 107.
    Cappola TP. Molecular remodeling in human heart failure. J Am Coll Cardiol. 2008;51(2):137–8.  https://doi.org/10.1016/j.jacc.2007.09.028.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhao M, Fajardo G, Urashima T, Spin JM, Poorfarahani S, Rajagopalan V, et al. Cardiac pressure overload hypertrophy is differentially regulated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol. 2011;301(4):H1461–70.  https://doi.org/10.1152/ajpheart.00453.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Maillet M, van Berlo JH, Molkentin JD. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat Rev Mol Cell Biol. 2013;14(1):38–48.  https://doi.org/10.1038/nrm3495.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kellerman S, Moore JA, Zierhut W, Zimmer HG, Campbell J, Gerdes AM. Nuclear DNA content and nucleation patterns in rat cardiac myocytes from different models of cardiac hypertrophy. J Mol Cell Cardiol. 1992;24(5):497–505.PubMedCrossRefGoogle Scholar
  111. 111.
    Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26(5):704–28.  https://doi.org/10.1210/er.2003-0033.CrossRefGoogle Scholar
  112. 112.
    Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.  https://doi.org/10.1172/JCI60047.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Edwards JG, Bahl JJ, Flink IL, Cheng SY, Morkin E. Thyroid hormone influences beta myosin heavy chain (beta MHC) expression. Biochem Biophys Res Commun. 1994;199(3):1482–8.  https://doi.org/10.1006/bbrc.1994.1398.PubMedCrossRefGoogle Scholar
  114. 114.
    Le Bouter S, Demolombe S, Chambellan A, Bellocq C, Aimond F, Toumaniantz G, et al. Microarray analysis reveals complex remodeling of cardiac ion channel expression with altered thyroid status: relation to cellular and integrated electrophysiology. Circ Res. 2003;92(2):234–42.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol. 2003;284(1):H108–15.  https://doi.org/10.1152/ajpheart.00282.2002.CrossRefGoogle Scholar
  116. 116.
    Chen YF, Pottala JV, Weltman NY, Ge X, Savinova OV, Gerdes AM. Regulation of gene expression with thyroid hormone in rats with myocardial infarction. PLoS One. 2012;7(8):e40161.  https://doi.org/10.1371/journal.pone.0040161.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Forini F, Ucciferri N, Kusmic C, Nicolini G, Cecchettini A, Rocchiccioli S, et al. Low T3 state is correlated with cardiac mitochondrial impairments after ischemia reperfusion injury: evidence from a proteomic approach. Int J Mol Sci. 2015;16(11):26687–705.  https://doi.org/10.3390/ijms161125973.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Janssen R, Zuidwijk M, Muller A, Mulders J, Oudejans CB, Simonides WS. Cardiac expression of deiodinase type 3 (Dio3) following myocardial infarction is associated with the induction of a pluripotency microRNA signature from the Dlk1-Dio3 genomic region. Endocrinology. 2013;154(6):1973–8.  https://doi.org/10.1210/en.2012-2017.CrossRefGoogle Scholar
  119. 119.
    Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS. Thyroid hormone-regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol. 2014;5:171.  https://doi.org/10.3389/fendo.2014.00171.CrossRefGoogle Scholar
  120. 120.
    Gil-Cayuela C, Rosello LE, Tarazon E, Ortega A, Sandoval J, Martinez-Dolz L, et al. Thyroid hormone biosynthesis machinery is altered in the ischemic myocardium: An epigenomic study. Int J Cardiol. 2017;243:27–33.  https://doi.org/10.1016/j.ijcard.2017.05.042.CrossRefGoogle Scholar
  121. 121.
    Gil-Cayuela C, Ortega A, Tarazon E, Martinez-Dolz L, Cinca J, Gonzalez-Juanatey JR, et al. Myocardium of patients with dilated cardiomyopathy presents altered expression of genes involved in thyroid hormone biosynthesis. PLoS One. 2018;13(1):e0190987.  https://doi.org/10.1371/journal.pone.0190987.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Chen YF, Kobayashi S, Chen J, Redetzke RA, Said S, Liang Q, et al. Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol. 2008;44(1):180–7.  https://doi.org/10.1016/j.yjmcc.2007.09.009.CrossRefGoogle Scholar
  123. 123.
    Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005;39(5):841–4.  https://doi.org/10.1016/j.yjmcc.2005.07.019.CrossRefGoogle Scholar
  124. 124.
    Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM. L-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol. 2005;39(2):251–8.  https://doi.org/10.1016/j.yjmcc.2005.03.020.CrossRefGoogle Scholar
  125. 125.
    Pantos C, Malliopoulou V, Paizis I, Moraitis P, Mourouzis I, Tzeis S, et al. Thyroid hormone and cardioprotection: study of p38 MAPK and JNKs during ischaemia and at reperfusion in isolated rat heart. Mol Cell Biochem. 2003;242(1–2):173–80.CrossRefGoogle Scholar
  126. 126.
    Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem. 2006;281(30):20666–72.  https://doi.org/10.1074/jbc.M512671200.CrossRefGoogle Scholar
  127. 127.
    Kehat I, Davis J, Tiburcy M, Accornero F, Saba-El-Leil MK, Maillet M, et al. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res. 2011;108(2):176–83.  https://doi.org/10.1161/CIRCRESAHA.110.231514.PubMedCrossRefGoogle Scholar
  128. 128.
    Suarez J, Scott BT, Suarez-Ramirez JA, Chavira CV, Dillmann WH. Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol. 2010;299(6):C1524–9.  https://doi.org/10.1152/ajpcell.00168.2010.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Pantos C, Mourouzis I, Galanopoulos G, Gavra M, Perimenis P, Spanou D, et al. Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res. 2010;42(10):718–24.  https://doi.org/10.1055/s-0030-1255035.CrossRefGoogle Scholar
  130. 130.
    Adamopoulos S, Gouziouta A, Mantzouratou P, Laoutaris ID, Dritsas A, Cokkinos DV, et al. Thyroid hormone signalling is altered in response to physical training in patients with end-stage heart failure and mechanical assist devices: potential physiological consequences? Interact Cardiovasc Thorac Surg. 2013;17(4):664–8.  https://doi.org/10.1093/icvts/ivt294.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Wang B, Ouyang J, Xia Z. Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: reversal of increased beta-myosin heavy chain gene expression. Can J Physiol Pharmacol. 2006;84(8–9):935–41.  https://doi.org/10.1139/y06-043.PubMedCrossRefGoogle Scholar
  132. 132.
    Barreto-Chaves ML, Carrillo-Sepulveda MA, Carneiro-Ramos MS, Gomes DA, Diniz GP. The crosstalk between thyroid hormones and the renin-angiotensin system. Vasc Pharmacol. 2010;52(3–4):166–70.  https://doi.org/10.1016/j.vph.2009.10.009.CrossRefGoogle Scholar
  133. 133.
    Montalvo D, Perez-Trevino P, Madrazo-Aguirre K, Gonzalez-Mondellini FA, Miranda-Roblero HO, Ramonfaur-Gracia D, et al. Underlying mechanism of the contractile dysfunction in atrophied ventricular myocytes from a murine model of hypothyroidism. Cell Calcium. 2018;72:26–38.  https://doi.org/10.1016/j.ceca.2018.01.005.PubMedCrossRefGoogle Scholar
  134. 134.
    Ojamaa K, Kenessey A, Shenoy R, Klein I. Thyroid hormone metabolism and cardiac gene expression after acute myocardial infarction in the rat. Am J Physiol Endocrinol Metab. 2000;279(6):E1319–24.  https://doi.org/10.1152/ajpendo.2000.279.6.E1319.CrossRefGoogle Scholar
  135. 135.
    Forini F, Kusmic C, Nicolini G, Mariani L, Zucchi R, Matteucci M, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 2014;155(11):4581–90.  https://doi.org/10.1210/en.2014-1106.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Janssen R, Zuidwijk MJ, Muller A, van Mil A, Dirkx E, Oudejans CB, et al. MicroRNA 214 is a potential regulator of thyroid hormone levels in the mouse heart following myocardial infarction, by targeting the thyroid-hormone-inactivating enzyme deiodinase type III. Front Endocrinol. 2016;7:22.  https://doi.org/10.3389/fendo.2016.00022.CrossRefGoogle Scholar
  137. 137.
    Zhang D, Li Y, Liu S, Wang YC, Guo F, Zhai Q, et al. microRNA and thyroid hormone signaling in cardiac and skeletal muscle. Cell Biosci. 2017;7:14.  https://doi.org/10.1186/s13578-017-0141-y.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Quan X, Ji Y, Zhang C, Guo X, Zhang Y, Jia S, et al. Circulating MiR-146a may be a potential biomarker of coronary heart disease in patients with subclinical hypothyroidism. Cell Physiol Biochem. 2018;45(1):226–36.  https://doi.org/10.1159/000486769.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Diniz GP, Lino CA, Moreno CR, Senger N, Barreto-Chaves MLM. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone. J Cell Physiol. 2017;232(12):3360–8.  https://doi.org/10.1002/jcp.25781.PubMedCrossRefGoogle Scholar
  140. 140.
    Janssen R, Muller A, Simonides WS. Cardiac thyroid hormone metabolism and heart failure. Eur Thyroid J. 2017;6(3):130–7.  https://doi.org/10.1159/000469708.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Kruger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA. Thyroid hormone regulates developmental titin isoform transitions via the phosphatidylinositol-3-kinase/AKT pathway. Circ Res. 2008;102(4):439–47.  https://doi.org/10.1161/CIRCRESAHA.107.162719.PubMedCrossRefGoogle Scholar
  142. 142.
    Ghose Roy S, Mishra S, Ghosh G, Bandyopadhyay A. Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol. 2007;26(4):269–79.  https://doi.org/10.1016/j.matbio.2006.12.005.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Yao J, Eghbali M. Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy. Response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res. 1992;71(4):831–9.CrossRefGoogle Scholar
  144. 144.
    Ledee D, Portman MA, Kajimoto M, Isern N, Olson AK. Thyroid hormone reverses aging-induced myocardial fatty acid oxidation defects and improves the response to acutely increased afterload. PLoS One. 2013;8(6):e65532.  https://doi.org/10.1371/journal.pone.0065532.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Olson AK, Bouchard B, Ning XH, Isern N, Rosiers CD, Portman MA. Triiodothyronine increases myocardial function and pyruvate entry into the citric acid cycle after reperfusion in a model of infant cardiopulmonary bypass. Am J Physiol Heart Circ Physiol. 2012;302(5):H1086–93.  https://doi.org/10.1152/ajpheart.00959.2011.CrossRefGoogle Scholar
  146. 146.
    Kajimoto M, Ledee DR, Xu C, Kajimoto H, Isern NG, Portman MA. Triiodothyronine activates lactate oxidation without impairing fatty acid oxidation and improves weaning from extracorporeal membrane oxygenation. Circ J. 2014;78(12):2867–75.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Shi ST, Wu XX, Hao W, Wang X, Miao HT, Zhen L, et al. Triiodo-L-thyronine promotes the maturation of cardiomyocytes derived from rat bone marrow mesenchymal stem cells. J Cardiovasc Pharmacol. 2016;67(5):388–93.  https://doi.org/10.1097/FJC.0000000000000363.PubMedCrossRefGoogle Scholar
  148. 148.
    Ivashchenko CY, Pipes GC, Lozinskaya IM, Lin Z, Xiaoping X, Needle S, et al. Human-induced pluripotent stem cell-derived cardiomyocytes exhibit temporal changes in phenotype. Am J Physiol Heart Circ Physiol. 2013;305(6):H913–22.  https://doi.org/10.1152/ajpheart.00819.2012.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.New York Institute of Technology, College of Osteopathic Medicine at A-StateJonesboroUSA
  2. 2.NYITCOM College of Osteopathic Medicine Biomedical Sciences DepartmentOld WestburyUSA

Personalised recommendations