Thyroid and the Heart: A Historical Perspective

  • José Augusto Sgarbi


It has long been known that thyroid hormones exert marked effects on the cardiac structure and function and that most of its clinical signs and symptoms occur as a consequence of thyroid hormone action in the heart and cardiovascular system (Klein and Ojamaa, N Engl J Med 344:501–509, 2001; Razvi et al., J Am Coll Cardiol 24:1781–1796, 2018). Since the first connection between the thyroid and the heart by Caleb Hillier Parry (Underwood 2:110, 1825), in 1825, many studies in humans and in animals have documented the heart abnormalities in consequence of thyroid hormone excess or deficiency. Typically, hyperthyroidism is often associated with increased cardiac contractility and cardiac output, decreased peripheral vascular resistance, systolic arterial hypertension, tachycardia, atrial fibrillation, left ventricular hypertrophy, and heart failure (Kahaly and Dillmann, Endocr Rev 26:704–728, 2005). On the other hand, hypothyroidism is associated with decreased cardiac contractility, increased peripheral vascular resistance, diastolic arterial hypertension, bradycardia, dilatation of all chambers, pericardial effusion, and heart failure (Kahaly and Dillmann, Endocr Rev 26:704–728, 2005). All of these abnormalities reverse to a condition close to normal after the appropriated treatment and reestablishment of the euthyroid state.

The mechanism responsible for these heart abnormalities is complex and involves the genomic and non-genomic effects of thyroid hormone on the heart myocyte (Klein and Ojamaa, N Engl J Med 344:501–509, 2001; Razvi et al., J Am Coll Cardiol 24:1781–1796, 2018; Kahaly and Dillmann, Endocr Rev 26:704–728, 2005; Dillmann, Am J Med 88:626–630, 1990). Several important proteins that interfere in the cardiac contractility are positively or negatively regulated by the action of thyroid hormones, such as α-myosin heavy chain (α-MHC), β-myosin heavy chain (β-MHC), sarcoplasmic reticulum calcium adenosine triphosphatase (SERCA2), and phospholamban (Dillmann, Am J Med 88:626–630, 1990; Lompré et al., J Biol Chem 259:6437–6446, 1984; Rohrer and Dillmann, J Biol Chem 263:6941–6944, 1988).

In this chapter, we shall be discussing the connection between the thyroid and the heart in a historical perspective, aiming to understand the linkages between the past and the present state of knowledge.


Thyroid Thyroid hormone Hyperthyroidism Hypothyroidism Heart disease Heart failure 


  1. 1.
    Parry CH. Collections from the unpublished medical writings, London. Underwood. 1825;2:110.Google Scholar
  2. 2.
    Rolleston HD. The endocrine organs in health and disease. London: Oxford University Press; 1936.Google Scholar
  3. 3.
    Flajani G. Sopra un tumor freddo nell’anterior partedell collo detto bronchocele. In: Collezione d’osservazione e riflessioni di chirurgia. Roma, vol. 3;1802. p. 270.Google Scholar
  4. 4.
    Adelmann A. Beiträge zur Pathologie des Herzens, der Schildrüse und des Gehirns. Jahrb d Phil med ges zu Wurzburg. 1828;1:104–8.Google Scholar
  5. 5.
    Graves RJ. Clinical lectures delivered at the Meath hospital during the session of 1834–5. Lecture XII. London Med Surg J. 1835;7:513.Google Scholar
  6. 6.
    Basedow CA. Exophthalmos durch Hypertrophie des Zellgewebes in der Augenhohle. Wochenschr Ges Heilk. 1840;6:197–204.Google Scholar
  7. 7.
    Sawin CT. Theories of causation of Graves’ disease. A historical perspective. Endocrinol Metab Clin N Am. 1998;27:63–72. Scholar
  8. 8.
    Moebius PJ. Book Review. Ueber das Wesen der Basedowschen Krankheit. Arch Psychiatrie. 1886;17:301.CrossRefGoogle Scholar
  9. 9.
    Hamburger WW. The heart in thyroid disease. Arch Int Med. 1929;43:35–49. Scholar
  10. 10.
    Symmers D. The relationship of the so-called idiopathic cardiopathy to exophthalmic goiter. Arch Intern Med. 1918;21:337–50. Scholar
  11. 11.
    White PD, Aub JC. The electrocardiogram in thyroid disease. Arch Intern Med. 1918;21:766–9. Scholar
  12. 12.
    Krumbhaar EB. Electrocardiographic observations in toxic goitre. Am J Med Sci. 1918;155:175.CrossRefGoogle Scholar
  13. 13.
    Goodall JS, Rogers L. The electrical and histological manifestations of thyrotoxic myocarditis. Br Med J. 1927;1:1141–2.Google Scholar
  14. 14.
    Schoonmaker H, Webb CW. Report of a case of goitre (Adenomatus type) complicated by auricular fibrillation. Clifton M Bull. 1922;8:2.Google Scholar
  15. 15.
    Willius FA. The heart in thyroid disease. Ann Clin Med. 1923;1:269.Google Scholar
  16. 16.
    Baumgartner EA, Webb CW, Schoonmaker H. Auricular fibrillation in goiter. Arch Intern Med. 1924;33:500–12. Scholar
  17. 17.
    Wishart SW. Cardiac irregularities associated with diseases of the thyroid gland. Am J Surg. 1929;7:329–32. Scholar
  18. 18.
    Papp C. The heart in thyroid dysfunction. Postgrad Med J. 1945;21:45–51.CrossRefGoogle Scholar
  19. 19.
    Hamilton BE. Clinical notes on hearts in hyperthyroidism. Boston Med Surg J. 1922;186:216–8. Scholar
  20. 20.
    Kerr WJ, Hensel GC. Observations of the cardiovascular system in thyroid disease. Arch Intern Med. 1923;31:398–410. Scholar
  21. 21.
    Margolies A, Wood ERS. The heart in thyroid disease. I. The effect of thyroidectomy on the orthodiagram. J Clin Invest. 1935;14:483–96.CrossRefGoogle Scholar
  22. 22.
    Gilligan DR, Berlin DD, Volk MC, Stern B, Blumgart HL. Therapeutic effect of total ablation of normal thyroid on congestive heart failure and angina pectoris. IX. Postoperative parathyroid function. Clinical observations and serum calcium and phosphorus studies. J Clin Invest. 1934;13:789–806. Scholar
  23. 23.
    Astwood EB. The chemical nature of compounds which inhibit the function of the thyroid gland. J Pharmacol Exp Ther. 1943;78:79–89.Google Scholar
  24. 24.
    Astwood EB, Sullivan J, Bissell A, Tyslowitz R. Action of certain sulfonamides and of thiourea upon the function of the thyroid gland of the rat. Endocrinology. 1943;32(210):225. Scholar
  25. 25.
    Mackenzie CG, Mackenzie JB. Effect of sulfonamides and thioureas on the thyroid gland and basal metabolism. Endocrinology. 1943;32:185–209. Scholar
  26. 26.
    Raab W. Epinephrine tolerance of the heart altered by thyroxine and thiouracil (chemical assay of epinephrine in the rat heart). J Pharmacol Exp Ther. 1944;82:330–3.Google Scholar
  27. 27.
    Goetsch E. Newer methods in the diagnosis of thyroid disorders: pathological and clinical: B. Adrenaline hypersensitiveness in clinical states of hyperthyroidism. NY State J Med. 1918;18:259–67.Google Scholar
  28. 28.
    McDonald CH, Shepeard WL, Green MF, DeGroat AF. Response of the hyperthyroid heart to epinephrine. Am J Phys. 1935;112(2):227–30. Scholar
  29. 29.
    Barker SB, Fazikas JF, Himwich HE. Metabolic aspects of thyroid-adrenal interrelationship. Am J Phys. 1936;115:415–8.CrossRefGoogle Scholar
  30. 30.
    Wise B, Hoff HE. The effect of autonomic hormones on the thyrotoxic heart. J Pharmacol Exper Therap. 1938;64:217. Scholar
  31. 31.
    Aumann KW, Youmans WB. Differential sensitization of adrenergic neuroeffector system by the thyroid hormone. Am J Phys. 1940;131:394. Scholar
  32. 32.
    Canary J, Schaaf M, Duffy BJ Jr, Kyle LH. Effects of oral and intramuscular administration of reserpine in thyrotoxicosis. New Eng J Med. 1957;257:435–42. Scholar
  33. 33.
    Gaffney TE, Braunwald E, Kahler RL. Effects of guanethidine on triiodothyronine-induced hyperthyroidism in man. New Eng J Med. 1961;265:16–20. Scholar
  34. 34.
    Levey GS. The adrenergic nervous system in hyperthyroidism: therapeutic role of beta adrenergic blocking drugs. Pharmacol Ther. 1976;1:431–43. Scholar
  35. 35.
    Cookson H. The thyroid and the heart. Br Med J. 1959;1:254–9.CrossRefGoogle Scholar
  36. 36.
    Summers VK, Surtees SJ. Thyrotoxicosis and heart disease. Acta Med Scand. 1961;169:661–71. Scholar
  37. 37.
    Sandler G, Wilson GM. The nature and prognosis of heart disease in thyrotoxicosis. A review of 150 patients treated with 1311. Quart. J Med. 1959;28:347–69. Scholar
  38. 38.
    Likoff WB, Levine SA. Thyrotoxicosis as the sole cause of heart failure. Am J Med Sci. 1943;206:425–33.CrossRefGoogle Scholar
  39. 39.
    Friedberg CK, Sohval AR. The occurrence and the pathogenesis of cardiac hypertrophy in Graves’ disease. Am Heart J. 1937;13:599–618. Scholar
  40. 40.
    Hashimoto H. The heart in experimental hyperthyroidism with special reference to its histology. Endocrinology. 1921;5:579–606. Scholar
  41. 41.
    Boas EP. Cardiac disorders accompanying exophthalmic goiter: some factors in their pathogenesis. JAMA. 1923;80:1683–4. Scholar
  42. 42.
    Wilson FN. The cardiac disturbances associated with diseases of the thyroid gland. JAMA. 1924;82:1754–6. Scholar
  43. 43.
    Lyon DM. The influence of the thyroid gland on the response to adrenaline. Br Med J. 1923;1:966–7.CrossRefGoogle Scholar
  44. 44.
    Kunos G. Thyroid hormone-dependent interconversion of myocardial alpha- and beta-adrenoceptors in the rat. Br J Pharmacol. 1977;59:177–89.CrossRefGoogle Scholar
  45. 45.
    Will-Shahab L, Wollenberger A. Influence of thyroid state on the binding of noradrenaline to a cardiac subcellular fraction containing the beta-adrenoreceptor. Acta Biol Med Ger. 1974;32:K1–8.PubMedGoogle Scholar
  46. 46.
    Sharma VK, Banerjee SP. Beta-Adrenergic receptors in rat skeletal muscle. Effects of thyroidectomy. Biochim Biophys Acta. 1978;539:538–42.CrossRefGoogle Scholar
  47. 47.
    Blalock A, Harrison TR. Regulation of circulation: the effects of thyroidectomy and thyroid feeding on the cardiac output. Surg Gynec Obst Int. 1927;44:617.Google Scholar
  48. 48.
    Yater WM. The tachycardia, time factor, survival period and seat of action of thyroxine in the perfused hearts of thyroxinized rabbits. Am J Phys. 1931;98:338–43. Scholar
  49. 49.
    Tata JR, Ernster L, Lindberg O, Arrhenius E, Pedersen S, Hedman R. The action of thyroid hormones at the cell level. Biochem J. 1963;86:408–28.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Lifschitz MD, Kayne HL. Cardiac myofibrillar ATPase activity in hypophysectomized or thyroidectomized rats. Biochem Pharmacol. 1966;15:405–7. Scholar
  51. 51.
    Buccino RA, Spann JF Jr, Pool PE, Sonnenblick EH, Braunwald E. Influence of the thyroid state on the intrinsic contractile properties and energy stores of the myocardium. J Clin Invest. 1967;46:1669–82. Scholar
  52. 52.
    Thyrum PT, Kritcher EM, Luchi RJ. Effect of L-thyroxine on the primary structure of cardiac myosin. Biochim Biophys Acta. 1970;197:335–6. Scholar
  53. 53.
    Flink IL, Morkin E. Evidence for a new cardiac myosin species in thyrotoxic rabbit. FEBS Lett. 1977;81(2):391–4. Scholar
  54. 54.
    Yazaki Y, Raben MS. Effect of the thyroid state on the enzymatic characteristics of cardiac myosin. A difference in behavior of rat and rabbit cardiac myosin. Circ Res. 1975;36:208–15.CrossRefGoogle Scholar
  55. 55.
    Conway G, Heazlitt RA, Fowler NO, Gabel M, Green S. The effect of hyperthyroidism on the sarcoplasmic reticulum and myosin ATPase of dog hearts. J Mol Cell Cardiol. 1976;8:39–51. Scholar
  56. 56.
    Dillmann WH. Hormonal influences on cardiac myosin ATPase activity and myosin isoenzyme distribution. Mol Cell Endocrinol. 1984;34:169–81. Scholar
  57. 57.
    Oppenheimer JH, Koerner D, Schwartz HL, Surks MI. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab. 1972;35:330–3. Scholar
  58. 58.
    Szabó J, Nosztray K, Takács I, Szegi J. Thyroxine-induced cardiomegaly: assessment of nucleic acid, protein content and myosin ATPase of rat heart. Acta Physiol Acad Sci Hung. 1979;54:69–79.PubMedGoogle Scholar
  59. 59.
    Lompré AM, Nadal-Ginard B, Mahdavi V. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J Biol Chem. 1984;259:6437–46.PubMedGoogle Scholar
  60. 60.
    Rohrer D, Dillmann WH. Thyroid hormone markedly increases the mRNA coding for sarcoplasmic reticulum Ca2+-ATPase in the rat heart. J Biol Chem. 1988;263:6941–4.PubMedGoogle Scholar
  61. 61.
    Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert, Periasamy M. Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci U S A. 1989;86:2966–70. Scholar
  62. 62.
    Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med. 2001;344:501–9. Scholar
  63. 63.
    Razvi S, Jabbar A, Pingitore A, Danzi S, Biondi B, Klein I, Peeters R, Zaman A, Iervasi G. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;24:1781–96. Scholar
  64. 64.
    Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev. 2005;26:704–28. Scholar
  65. 65.
    Gull WW. On a cretinoid state supervening in adult life in women. Trans Clin Soc Lond. 1873–1874;7:180–5.Google Scholar
  66. 66.
    Ord WM. On Myxœdema, a term proposed to be applied to an essential condition in the “Cretinoid” Affection occasionally observed in Middle-aged Women. Med Chir Trans. 1878;61:57–78.5.CrossRefGoogle Scholar
  67. 67.
    Report of a Committee of the Clinical Society of London, nominated, December 14, 1883, to Investigate the Subject of Myxedema. Trans Clin Soc (London). 1888;21(Suppl.).Google Scholar
  68. 68.
    Hertoghe E. Thyroid deficiency. Med Record. 1914;86:489.Google Scholar
  69. 69.
    Hertoghe E. Thyroid insufficiency. Practitioner. 1915;xciv:28–36.Google Scholar
  70. 70.
    Zondek H. Das Myxodemherz, Miinchen, med. Wchnschr. 1918;65:1180.Google Scholar
  71. 71.
    Fahr G. Myxedema heart. JAMA. 1925;84:345–9. Scholar
  72. 72.
    Willius FA, Haines SF. The status of the heart in myxedema. Am Heart J. 1925;1:67–72. Scholar
  73. 73.
    Means JH, White PD, Krantz CI. Observations on the heart in myxedema. Boston Med Surg J. 1926;195:455–60. Scholar
  74. 74.
    Sturgis CC, Whiting WB. The treatment and prognosis in myxedema. JAMA. 1925;85:2013–7. Scholar
  75. 75.
    Sturgis CC. Angina Pectoris as a complication in myxedema and exophthalmic goiter. Boston Med Surg J. 1926;195(8):351–4. Scholar
  76. 76.
    Schnitzer R, Gutmann D. Myxoedema with pericardial effusion. Br Heart J. 1946;8:25–8.CrossRefGoogle Scholar
  77. 77.
    Baron DN. Hypothyroidism. Lancet. 1956;268:277–81. Scholar
  78. 78.
    Thompson WO. Studies in blood volume: I. The blood volume in myxedema, with a comparison of plasma volume changes in myxedema and cardiac edema. J Clin Invest. 1926;2:477–520. Scholar
  79. 79.
    Hallock P. The heart in myxedema, with a report of two cases. Am Heart J. 1933;9:196–211. Scholar
  80. 80.
    Hurxthal LM. Myxedema heart with congestive heart failure and polyserous effusions. N Engl J Med. 1935;213:264–7. Scholar
  81. 81.
    Freeman EB. Chronic pericardial effusion in myxedema: report of case. Ann Intern Med. 1934;7:1070–9. Scholar
  82. 82.
    La Due JS. Myxedema heart: a pathological and therapeutic study. Ann Int Med. 1943;18:332–44. Scholar
  83. 83.
    Ellis LB, Mebane JG, Maresh G, Hultgren HN, Bloomfield RA. The effect of myxedema on the cardiovascular system. Am Heart J. 1952;43:341–56.CrossRefGoogle Scholar
  84. 84.
    Amidi M, Leon DF, de Groot WJ, et al. Effect of the thyroid state on myocardial contractility and ventricular ejection rate in man. Circulation. 1968;38:229–39.CrossRefGoogle Scholar
  85. 85.
    Crowley WF Jr, Ridgway EC, Bough EW, Francis GS, Daniels GH, Kourides IA, Myers GS, Maloof F. Noninvasive evaluation of cardiac function in hypothyroidism. Response to gradual thyroxine replacement. N Engl J Med. 1977;296:1–6. Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • José Augusto Sgarbi
    • 1
  1. 1.Division of Endocrinology and Metabolism, Department of Internal MedicineFaculdade de Medicina de MariliaMaríliaBrazil

Personalised recommendations