Polarization Properties of a Rectangular Balanced Omega Element in the THz Range

  • Igor SemchenkoEmail author
  • Sergei Khakhomov
  • Maxim Podalov
  • Andrey Samofalov
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)


The paper aims to create a new type of polarizers in the THz range of electromagnetic waves, comprising an array of micro-dimensional planar rectangular omega elements. The metal omega elements under consideration have a well-balanced shape, since the incident electromagnetic wave induces in them an electric dipole moment and a magnetic moment, which are equally significant. Such an optimal shape of the omega elements allows their use in the absorbers of microwave and THz waves. The paper illustrates that this shape of omega resonators is also universal for their use in THz polarizers.


Metamaterials Omega-element Polarization Terahertz range 


  1. 1.
    Cheng, Z., Cheng, Y.: A multi-functional polarization convertor based on chiral metamaterial for terahertz waves. Opt. Comm. 435, 178–182 (2019)CrossRefGoogle Scholar
  2. 2.
    Sun, B., Yu, Y.: Optical refractive index sensor based on the conjugated bilayer Г-shaped chiral metamaterials Optik 182, 587–593 (2019)Google Scholar
  3. 3.
    Yingying, Yu., Sun, B.: Analysis of giant circular dichroism metamaterial based on conductive coupling. Optik 182, 1046–1052 (2019)CrossRefGoogle Scholar
  4. 4.
    Mirzamohammadi, F., Nourinia, J., Ghobadi, C., Majidzadeh, M.: A bi-layered chiral metamaterial with high-performance broadband asymmetric transmission of linearly polarized wave. AEU—Int. J. Electron. Commun. 98, 58–67 (2019)CrossRefGoogle Scholar
  5. 5.
    Cheng, Y.Z., Nie, Y., Cheng, Z.Z., Wang, X., Gong, R.Z.: Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator. Appl. Phys. B 116, 129–134 (2014)CrossRefGoogle Scholar
  6. 6.
    Sakellari, I., Yin, X., Nesterov, M.L., Terzaki, K., Xomalis, A., Farsari, M.: 3D chiral plasmonic metamaterials fabricated by direct laser writing: the twisted omega particle. Adv. Opt. Mater. 5(16), 1700200 (2017)CrossRefGoogle Scholar
  7. 7.
    Stojanović, D.B., Beličev, P.P., Radovanović, J., Milanović, V.: Numerical parametric study of chiral effects and group delays in Ω element based terahertz metamaterial. Phys. Lett. A 383, 1816–1820 (2019)CrossRefGoogle Scholar
  8. 8.
    Liu, D.-j., Xiao, Z.-y., Ma, X.-l., Kai-Kai, X., Tang, J.-y., Wang, Z.-h.: Broadband asymmetric transmission and polarization conversion of a linearly polarized wave based on chiral metamaterial in terahertz region. Wave Motion 66, 1–9 (2016)CrossRefGoogle Scholar
  9. 9.
    Liu, D.-j., Xiao, Z.-y., Ma, X.-l., Wang, Z.-h.: Broadband asymmetric transmission and multi-band 90° polarization rotator of linearly polarized wave based on multi-layered metamaterial. Opt. Commun. 354, 272–276 (2015)CrossRefGoogle Scholar
  10. 10.
    Semchenko, I.V., Khakhomov, S.A., Podalov, M.A., Tretyakov, S.A.: Radiation of circularly polarized microwaves by a plane periodic structure of Ω elements. J. Commun. Technol. Electron. 52(9), 1002–1005 (2007)CrossRefGoogle Scholar
  11. 11.
    Semchenko, I.V., Khakhomov, S.A., Samofalov, A.L., Podalov, M.A., Songsong, Q.: The effective optimal parameters of metamaterial on the base of omega-elements. In: Jablonski, R., Szewczyk, R. (eds.) Recent Global Research and Education: Technological Challenges, INTER-ACADEMIA 2016. Advances in Intelligent Systems and Computing, vol. 519, pp. 3–9 (2017)Google Scholar
  12. 12.
    Semchenko, I.V., Khakhomov, S.A., Samofalov, A.L., Podalov, M.A., Solodukha, V.A., Pyatlitski, A.N., Kovalchuk, N.S.: Omega-structured substrate-supported metamaterial for the transformation of wave polarization in THz frequency range. In: Luca, D., Sirghi, L., Costin, C. (eds.) Recent Advances in Technology Research and Education, INTER-ACADEMIA 2017. Advances in Intelligent Systems and Computing, vol. 660, pp. 72–80 (2018)Google Scholar
  13. 13.
    Semchenko, I., Khakhomov, S., Samofalov, A., Faniayeu, I., Slepiankou, D., Solodukha, V., Pyatlitski, A., Kovalchuk, N., Goncharenko, A., Sinitsyn, G.: Design and Creation of Metal-Polymer Absorbing Metamaterials Using the Vacuum-Plasma Technologies. Springer Nature Switzerland AG 2019, G. Laukaitis (Ed.): INTER-ACADEMIA 2018, LNNS 53, pp. 105–112 (2019)Google Scholar
  14. 14.
    Balmakou, A., Podalov, M., Khakhomov, S., Stavenga, D., Semchenko, I.: Ground-plane-less bidirectional terahertz absorber based on omega resonators. Opt. Lett. 40(9), 2084–2087 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Francisk Skorina Gomel State UniversityGomelBelarus

Personalised recommendations