Advertisement

Color Control of the Mechanoluminescent Material Through a Combination of Color Centers

  • Kenji MurakamiEmail author
  • Keita Suzuki
  • Yoshiki Iwai
  • Masayuki Okuya
  • Masaru Shimomura
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)

Abstract

We have synthesized the new organic mechanoluminescent material based on a 1,10-phenanthroline and an acetylacetone. The synthesized material shows both the photoluminescence and the mechanoluminescence with a green-color (main peak at 545 nm) by doping of a terbium (Tb). We have also investigated an effect of co-doping of Tb and europium (Eu) or dysprosium (Dy) on the luminescence property. Single doping gives a luminescence corresponding to each dopant with the main peak at 545, 612 or 573 nm for Tb, Eu or Dy, respectively, but the co-doping of Tb and Eu gives the luminescence corresponding to their doping amount ratio. As a result, the visual color can be controlled by the ratio. On the other hand, the co-doping of Tb and Dy keeps the luminescence corresponding to Tb single doping, but enhances its intensity. The results suggest that the electron transition process is different between the Tb-Eu and Tb-Dy co-doping. In the case of Tb/Eu co-doping, each dopant induced each own luminescence due to a significant difference in the electron energy state level between Tb and Eu. In contrary, the energy state of Dy becomes an extra electron supplier to Tb for the Tb/Dy co-doping. The results can expand application fields of the mechanoluminescence.

Keywords

Mechanoluminescence Organic materials Co-doping 

References

  1. 1.
    Tiwari, N., Dubey, V., Kuraria, R.K.: Mechanoluminescence study of europium doped CaZrO3 phosphor. J. Fluores. 26(4), 1309–1315 (2016)CrossRefGoogle Scholar
  2. 2.
    Chandra, B.P.: Luminescence of solids. Springer, Boston, MA, USA (1998)Google Scholar
  3. 3.
    Jha, P., Chandra, B.P.: Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence 29(8), 977–993 (2014)CrossRefGoogle Scholar
  4. 4.
    Chandra, B.P., Parganiha, S., Chandra, V.K., Jha, P., Baghel, R.N.: Sensing of shock-wave velocity and pressure using shock-wave induced mechanoluminescence of crystals. Sens. Actuators A: Phys. 235, 203–209 (2015)CrossRefGoogle Scholar
  5. 5.
    Teotonio, E.E.S., Faustino, W.M., Brito, H.F., Felinto, M.C.F.C., Moura, J.L., Costa, I.F., Santos, P.R.S.: Triboluminescence: theory, synthesis, and application. Springer International Publishing, Cham (2016)Google Scholar
  6. 6.
    Chandra, B.P., Chandra, V.K., Jha, P.: Microscopic theory of elastico-mechanoluminescence smart materials. Appl. Phys. Lett. 104(3), 031102 (2014)CrossRefGoogle Scholar
  7. 7.
    Chandra, V.K., Chandra, B.P.: Suitable materials for elastico mechanoluminescence-based stress sensors. Opt. Mater. 34(1), 194–200 (2011)CrossRefGoogle Scholar
  8. 8.
    Jeong, S.M., Song, S., Kim, H., Joo, K.I., Takezoe, H.: Mechanoluminescence color conversion by spontaneous fluorescent-dye-diffusion in elastomeric zinc sulfide composite. Adv. Func. Mater. 26(7), 4848–4858 (2016)CrossRefGoogle Scholar
  9. 9.
    Botterman, J., den Eeckkhout, K.V., Baere, I.D., Poelman, D., Smet, P.F.: Mechanoluminescence in BaSi2O2N2:Eu. Acta Mater. 60(15), 5494–5500 (2012)CrossRefGoogle Scholar
  10. 10.
    Chandra, B.P., Chandra, V.K., Mahobia, S.K., Jha, P., Tiwari, R., Haldar, B.: Real-time mechanoluminescence sensing of the amplitude and duration of impact stress. Sens. Actuators A: Phys. 173(1), 9–16 (2012)CrossRefGoogle Scholar
  11. 11.
    Wang, X., Zhang, H., Yu, R., Dong, L., Peng, D., Zhang, A., Zhan, Y., Liu, H., Pan, C., Wang, Z.L.: Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process. Adv. Mater. 27(14), 2324–2331 (2015)CrossRefGoogle Scholar
  12. 12.
    Takada, N., Hieda, S., Sugiyama, J., Katoh, R., Minami, N.: Mechanoluminescence from piezoelectric crystals of an europium complex. Synthesis Metals. 111–112, 587–590 (2000)CrossRefGoogle Scholar
  13. 13.
    Chandra, B.P.: Mechanoluminescence and high pressure photoluminescence of (Zn, Cd)S phosphors. Pramana 19(5), 455–465 (1952)CrossRefGoogle Scholar
  14. 14.
    Chandra, B.P., Chandra, V.K., Jha, P.: Models for intrinsic and extrinsic fracto-mechanoluminescence of solids. J. Luminesc. 135, 139–153 (2013)CrossRefGoogle Scholar
  15. 15.
    Lin, Y.-H., Dang, A., Deng, Y., Nan, C.W.: Studies on mechanoluminescence from SrAl2O4: Eu, Dy phosphor. Mater. Chem. Phys. 80(1), 20–22 (2003)CrossRefGoogle Scholar
  16. 16.
    Zhang, J.-C., Long, Y.-Z., Wang, X., Xu, C.-N.: Controlling elastico-mechanoluminescence in diphase (Ba,Ca)TiO3:Pr3+ by co-doping different rare earth ions. RSC Adv. 4(77), 40665–40675 (2014)CrossRefGoogle Scholar
  17. 17.
    Chandra, B.P., Baghel, R.N., Luka, A.K., Sanodiya, T.R., Kuraria, R.K., Kuraria, S.R.: Strong mechanoluminescence induced by elastic deformation of rare-earth-doped strontium aluminate phosphors. J. Luminesc. 129(7), 760–766 (2009)CrossRefGoogle Scholar
  18. 18.
    Pust, P., Weller, V., Hecht, C., Tuecks, A., Wochnik, A.S., Henss, A.-K., Wiechert, D., Scheu, C., Schmidt, P.J., Schnick, W.: Narrow-band red-emitting Sr[LiAl3N4]:Eu2+ as a next-generation LED-phosphor material. Nature Mater. 13, 891–896 (2014)CrossRefGoogle Scholar
  19. 19.
    Fontenot, R.S., Hollerman, W.A., Bhat, K.N., Aggarwal, M.D.: Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds. J. Luminesc. 132(7), 1812–1818 (2012)CrossRefGoogle Scholar
  20. 20.
    Ranasinghe, R.A.D.M., Tanaka, Y., Okuya, M., Shimomura, M., Murakami, K.: Structural characterizations of organic-based materials with extensive mechanoluminescence properties. J. Luminesc. 190, 413–423 (2017)CrossRefGoogle Scholar
  21. 21.
    Ranasinghe, R.A.D.M., Rajapakse, R.M.G Illeperuma O.A., Okuya, M. and Murakami, K.: Effect of added polyvinylpyrrolidone on mechanoluminescent property of europium-doped dibenzoylmethide triethylammonium. JJAP Conf. Proceed. 4, 011105(1–4) (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kenji Murakami
    • 1
    Email author
  • Keita Suzuki
    • 1
  • Yoshiki Iwai
    • 1
  • Masayuki Okuya
    • 1
  • Masaru Shimomura
    • 1
  1. 1.Shizuoka UniversityJohokuJapan

Personalised recommendations