Urban Train Soil-Structure Interaction Modeling and Analysis

  • Danial Mohammadzadeh
  • Nader Karballaeezadeh
  • Morteza Mohemmi
  • Amir MosaviEmail author
  • Annamária R. Várkonyi-Kóczy
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)


Design and advancement of the durable urban train infrastructures are of utmost importance for reliable mobility in the smart cities of the future. Given the importance of urban train lines, tunnels, and subway stations, these structures should be meticulously analyzed. In this research, two-dimensional modeling and analysis of the soil-structure mass of the Alan Dasht station of Mashhad Urban Train are studied. The two-dimensional modeling was conducted using Hashash’s method and displacement interaction. After calculating the free-field resonance and side distortion of the soil mass, this resonance was entered into PLAXIS finite element program, and finally, stress and displacement contours together with the bending moment, shear force and axial force curves of the structure were obtained.


Urban mobility Urban train lines Modeling Soil mass-structure Soil-structure interaction PLAXIS Computational mechanics Simulation Smart cities Urban sustainable development Urban rail transportation 



This publication has been supported by the Project: “Support of research and development activities of the J. Selye University in the field of Digital Slovakia and creative industry” of the Research & Innovation Operational Programme (ITMS code: NFP313010T504) co-funded by the European Regional Development Fund.


  1. 1.
    Aguirre, E., et al.: Design and implementation of context aware applications with wireless sensor network support in urban train transportation environments. IEEE Sens. J. 17(1), 169–178 (2017)CrossRefGoogle Scholar
  2. 2.
    Bu, B., et al.: Research on method of cooperation among trains for energy saving in urban rail transportation. Tiedao Xuebao/J. China Railw. Soc. 40(8), 43–51 (2018)Google Scholar
  3. 3.
    Fernández-Rodríguez, A., et al.: Energy efficiency and integration of urban electrical transport systems: EVS and metro-trains of two real European lines. Energies 12(3), 366 (2019)CrossRefGoogle Scholar
  4. 4.
    He, W., et al.: Effect of wind barrier’s height on train-bridge system aerodynamic characteristic of cable-stayed bridge for urban railway transportation. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/J. Central South Univ. (Science and Technology) 48(8), 2238–2244 (2017)Google Scholar
  5. 5.
    Kim, K.: Exploring the difference between ridership patterns of subway and taxi: case study in Seoul. J. Transp. Geogr. 66, 213–223 (2018)CrossRefGoogle Scholar
  6. 6.
    Tang, T., et al.: VISOS: a visual interactive system for spatial-temporal exploring station importance based on subway data. IEEE Access 6, 42131–42141 (2018)CrossRefGoogle Scholar
  7. 7.
    Wang, J., et al.: IS2Fun: identification of subway station functions using massive urban data. IEEE Access 5, 27103–27113 (2017)CrossRefGoogle Scholar
  8. 8.
    Aram, F., et al.: Design and validation of a computational program for analysing mental maps: aram mental map analyzer. Sustainability (Switzerland) 11(14), 3790 (2019)CrossRefGoogle Scholar
  9. 9.
    Dehghani, M., et al.: Prediction of hydropower generation using Grey wolf optimization adaptive neuro-fuzzy inference system. Energies 12(2), 289 (2019)CrossRefGoogle Scholar
  10. 10.
    Mosavi, A., et al.: State of the art of machine learning models in energy systems, a systematic review. Energies 12(7), 1301 (2019)CrossRefGoogle Scholar
  11. 11.
    Nosratabadi, S., et al.: Sustainable business models: a review. Sustainability (Switzerland) 11(6), 1663 (2019)CrossRefGoogle Scholar
  12. 12.
    Taherei Ghazvinei, P., et al.: Sugarcane growth prediction based on meteorological parameters using extreme learning machine and artificial neural network. Eng. Appl. Comput. Fluid Mech. 12(1), 738–749 (2018)Google Scholar
  13. 13.
    Torabi, M., et al.: A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environ. Prog. Sustain. Energy 38(1), 66–76 (2019)CrossRefGoogle Scholar
  14. 14.
    Nosratabadi, S., et al.: Sustainable business models: a review. Sustain. 11(6), 1663 (2019)Google Scholar
  15. 15.
    Peng, Y.T., Li, Z.C., Choi, K.: Transit-oriented development in an urban rail transportation corridor. Transp. Res. Part B Methodol. 103, 269–290 (2017)CrossRefGoogle Scholar
  16. 16.
    Wu, C., Pei, Y., Gao, J.: Analysis on transportation supply-demand adjustment ability of urban rail transit network. Wuhan Ligong Daxue Xuebao (Jiaotong Kexue Yu Gongcheng Ban)/J. Wuhan Univ. Technol. (Transportation Science and Engineering) 41(1), 22–26 and 31 (2017)Google Scholar
  17. 17.
    Zhang, C., Xia, H., Song, Y.: Rail transportation lead urban form change: a case study of Beijing. Urban Rail Transit. 3(1), 15–22 (2017)CrossRefGoogle Scholar
  18. 18.
    Lee, Y., et al.: Generation characteristics of nanoparticles emitted from subways in operation. Aerosol Air Qual. Res. 18(9), 2230–2239 (2018)CrossRefGoogle Scholar
  19. 19.
    Liu, X., et al.: Evaluation of the utility efficiency of subway stations based on spatial information from public social media. Habitat Int. 79, 10–17 (2018)CrossRefGoogle Scholar
  20. 20.
    Zhao, X., et al.: Clustering analysis of ridership patterns at subway stations: a case in Nanjing, China. J. Urban Planning Dev. 145(2) (2019)CrossRefGoogle Scholar
  21. 21.
    Liu, X., et al.: Evaluation of effects of static pile driving on existing metro tunnel structure. J. Perform. Constr. Facilities 33(4) (2019)CrossRefGoogle Scholar
  22. 22.
    Mostafaei, M., Rezaei Far, A.H., Rastegarnia, A.: Assessment of the impact of case parameters affecting abrasion and brittleness factors in alluviums of line 2 of theTabriz subway, Iran. Bull. Eng. Geology Environ. 78(5), 3851–3861 (2019)CrossRefGoogle Scholar
  23. 23.
    Zhou, S., et al.: An approach integrating dimensional analysis and field data for predicting the load on tunneling machine. KSCE J. Civil Eng. 23(7), 3180–3187 (2019)CrossRefGoogle Scholar
  24. 24.
    Mosleh, A., Nosratabadi, S., Bahrami, P.: Recognizing the business models types in tourism agencies: utilizing the cluster analysis. Int. Bus. Res. 8(2), 173 (2015)CrossRefGoogle Scholar
  25. 25.
    Wang, W., et al.: Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi earthquake. Tunn. Undergr. Space Technol. 16(3), 133–150 (2001)CrossRefGoogle Scholar
  26. 26.
    Kontogianni, V.A., Stiros, S.C.: Earthquakes and seismic faulting: effects on tunnels. Turkish J. Earth Sci. 12(1), 153–156 (2003)Google Scholar
  27. 27.
    Tajiri, M.: Damage done by the great earthquake disaster of the Hanshin. Awaji district to the Kobe municipal subway system and restoration works of the damage. Japanese Railway Eng. 36(2), 19–23 (1997)Google Scholar
  28. 28.
    Sharma, S., Judd, W.R.: Underground opening damage from earthquakes. Eng. Geol. 30(3–4), 263–276 (1991)CrossRefGoogle Scholar
  29. 29.
    Hashash, Y.M., et al.: Seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 16(4), 247–293 (2001)CrossRefGoogle Scholar
  30. 30.
    Hashash, Y.M., Park, D.: Non-linear one-dimensional seismic ground motion propagation in the Mississippi embayment. Eng. Geol. 62(1–3), 185–206 (2001)CrossRefGoogle Scholar
  31. 31.
    Pakbaz, M.C., Yareevand, A.: 2-D analysis of circular tunnel against earthquake loading. Tunn. Undergr. Space Technol. 20(5), 411–417 (2005)CrossRefGoogle Scholar
  32. 32.
    Hashash, Y.M., et al.: Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures. Tunn. Undergr. Space Technol. 20(5), 435–441 (2005)CrossRefGoogle Scholar
  33. 33.
    Wang, J.-N., Munfakh, G.: Seismic Design of Tunnels. Vol. 57. WIT Press (2001)Google Scholar
  34. 34.
    Plaxis, B.: Finite element code for soil and rock analysis. Users Manual, Version, 7 (2000)Google Scholar
  35. 35.
    Karballaeezadeh, N., et al.: Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan-Firuzkuh road). Eng. Appl. Comput. Fluid Mech. 13(1), 188–198 (2019)Google Scholar
  36. 36.
    Mohammadzadeh, S., et al.: Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 4(2), 26 (2019)CrossRefGoogle Scholar
  37. 37.
    Haase, D., et al.: Global urbanization. The Urban Planet: Knowledge Towards Sustainable Cities, 19 (2018)Google Scholar
  38. 38.
    Brinkgreve, R. et al.: PLAXIS 2D 2010. User manual, Plaxis bv (2010)Google Scholar
  39. 39.
    Manual, P.: Finite Element Code for Soil and Rock Analysis. Published and distributed by AA Balkema Publishers, Nederland’s Comput. Geotech. 32(5): p. 326–339 (2007)Google Scholar
  40. 40.
    Asadi, E., et al.: Groundwater Quality Assessment for Drinking and Agricultural Purposes in Tabriz Aquifer, Iran (2019)Google Scholar
  41. 41.
    Asghar, M.Z., Subhan, F., Imran, M., Kundi, F.M., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, A.R.: Performance evaluation of supervised machine learning techniques for efficient detection of emotions from online content. Pre-prints 2019, 2019080019
  42. 42.
    Bemani, A., Baghban, A., Shamshirband, S., Mosavi, A., Csiba, P., Várkonyi-Kóczy, Applying, A.R.: ANN, ANFIS, and LSSVM Models for Estimation of Acid Sol-vent Solubility in Supercritical CO2. Preprints 2019, 2019060055.
  43. 43.
    Choubin, B., et al.: Snow avalanche hazard prediction using machine learning methods. J. Hydrol., 577 (2019)CrossRefGoogle Scholar
  44. 44.
    Choubin, B., et al.: An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 651, 2087–2096 (2019)CrossRefGoogle Scholar
  45. 45.
    Dineva, A., et al.: Multi-Label classification for fault diagnosis of rotating electrical machines (2019)Google Scholar
  46. 46.
    Ghalandari, M., et al.: Investigation of submerged structures’ flexibility on sloshing frequency using a boundary element method and finite element analysis. Eng. Appl. Comput. Fluid Mech. 13(1), 519–528 (2019)Google Scholar
  47. 47.
    Ghalandari, M., et al.: Flutter speed estimation using presented differential quadrature method formulation. Eng. Appl. Comput. Fluid Mech. 13(1), 804–810 (2019)Google Scholar
  48. 48.
    Mosavi, A., Edalatifar, M.: A Hybrid Neuro-Fuzzy Algorithm for Prediction of Reference Evapotranspiration, in Lecture Notes in Networks and Systems, pp. 235–243, Springer (2019)Google Scholar
  49. 49.
    Mosavi, A., Ozturk, P., Chau, K.W.: Flood prediction using machine learning models: literature review. Water (Switzerland) 10(11) (2018)CrossRefGoogle Scholar
  50. 50.
    Mosavi, A., Rabczuk, T.: Learning and intelligent optimization for material design innovation, D.E. Kvasov, et al., Editors, pp. 358–363. Springer (2017)Google Scholar
  51. 51.
    Mosavi, A., Rabczuk, T., Várkonyi-Kóczy, A.R.: Reviewing the novel machine learning tools for materials design, D. Luca, L. Sirghi, and C. Costin, Editors, pp. 50–58. Springer (2018)Google Scholar
  52. 52.
    Mosavi, A., et al.: Prediction of multi-inputs bubble column reactor using a novel hybrid model of computational fluid dynamics and machine learning. Eng. Appl. Comput. Fluid Mech. 13(1), 482–492 (2019)Google Scholar
  53. 53.
    Mosavi, A., Várkonyi-Kóczy, A.R.: Integration of machine learning and optimization for robot learning, R. Jablonski and R. Szewczyk, Editors, pp. 349–355. Springer (2017)Google Scholar
  54. 54.
    Qasem, S.N., et al.: Estimating daily dew point temperature using machine learning algorithms. Water (Switzerland) 11(3) (2019)CrossRefGoogle Scholar
  55. 55.
    Rezakazemi, M., Mosavi, A., Shirazian, S.: ANFIS pattern for molecular membranes separation optimization. J. Mol. Liq. 274, 470–476 (2019)CrossRefGoogle Scholar
  56. 56.
    Riahi-Madvar, H., et al.: Comparative analysis of soft computing techniques RBF, MLP, and ANFIS with MLR and MNLR for predicting grade-control scour hole geometry. Eng. Appl. Comput. Fluid Mech. 13(1), 529–550 (2019)Google Scholar
  57. 57.
    Shabani, S., Samadianfard, S., Taghi Sattari, M., Shamshirband, S., Mosavi, A., Kmet, T., Várkonyi-Kóczy, A.R.: Modeling Daily Pan Evaporation in Humid Climates Using Gaussian Process Regression. Preprints 2019, 2019070351.
  58. 58.
    Shamshirband, S., Hadipoor, M., Baghban, A., Mosavi, A., Bukor J., Várkonyi-Kóczy, A.R.: Developing an ANFIS-PSO Model to predict mercury emissions in Combustion Flue Gases. Preprints 2019, 2019070165.
  59. 59.
    Shamshirband, S., et al.: Ensemble models with uncertainty analysis for multi-day ahead forecasting of chlorophyll a concentration in coastal waters. Eng. Appl. Comput. Fluid Mech. 13(1), 91–101 (2019)Google Scholar
  60. 60.
    Shamshirband, S., Mosavi, A., Rabczuk, T.: Particle swarm optimization model to predict scour depth around bridge pier. arXiv preprint arXiv:1906.08863 (2019)
  61. 61.
    Torabi, M., et al.: A Hybrid Machine Learning Approach for Daily Prediction of Solar Radiation, in Lecture Notes in Networks and Systems, pp. 266–274. Springer (2019)Google Scholar
  62. 62.
    Ardabili, S., Mosavi, A., Mahmoudi, Mesri Gundoshmian, T., Nosratabadi, S., Var-konyi-Koczy, A.: Modelling temperature variation of mushroom growing hall using artificial neural networks, Preprints 2019Google Scholar
  63. 63.
    Mesri Gundoshmian, T., Ardabili, S., Mosavi, A., Varkonyi-Koczy, A., Prediction of combine harvester performance using hybrid machine learning modeling and re-sponse surface methodology, Preprints 2019Google Scholar
  64. 64.
    Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Systematic review of deep learning and machine learning models in biofuels research, Preprints 2019Google Scholar
  65. 65.
    Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Advances in machine learning modeling reviewing hybrid and ensemble methods, Preprints 2019Google Scholar
  66. 66.
    Ardabili, S., Mosavi, A., Varkonyi-Koczy, A.: Building Energy information: demand and consumption prediction with Machine Learning models for sustainable and smart cities, Preprints 2019Google Scholar
  67. 67.
    Ardabili, S., Mosavi, A., Dehghani, M., Varkonyi-Koczy, A.: Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review, Preprints 2019Google Scholar
  68. 68.
    Mohammadzadeh, D., Karballaeezadeh, N., Mohemmi, M., Mosavi, A., Várkonyi-Kóczy A.: Urban Train Soil-Structure Interaction Modeling and Analysis, Preprints 2019Google Scholar
  69. 69.
    Mosavi, A., Ardabili, S., Varkonyi-Koczy, A.: List of deep learning models, Preprints 2019Google Scholar
  70. 70.
    Nosratabadi, S., Mosavi, A., Keivani, R., Ardabili, S., Aram, F.: State of the art survey of deep learning and machine learning models for smart cities and urban sustainability, Preprints 2019Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Danial Mohammadzadeh
    • 1
    • 2
  • Nader Karballaeezadeh
    • 3
  • Morteza Mohemmi
    • 4
  • Amir Mosavi
    • 5
    • 6
    Email author
  • Annamária R. Várkonyi-Kóczy
    • 5
    • 7
  1. 1.Department of Civil EngineeringFerdowsi University of MashhadMashhadIran
  2. 2.Department of Elite Relations with IndustriesKhorasan Construction Engineering OrganizationMashhadIran
  3. 3.Faculty of Civil EngineeringShahrood University of TechnologyShahroodIran
  4. 4.Department of Civil EngineeringIran University of Science and TechnologyTehranIran
  5. 5.Institute of Automation, Kalman Kando Faculty of Electrical EngineeringObuda UniversityBudapestHungary
  6. 6.School of the Built EnvironmentOxford Brookes UniversityOxfordUK
  7. 7.Department of Mathematics and InformaticsJ. Selye UniversityKomarnoSlovakia

Personalised recommendations