Advertisement

A Model of Induced Motion of Inclusions in Inhomogeneously Stressed Crystals

  • Oleksandr P. KulykEmail author
  • Leonid A. Bulavin
  • Stella F. Skoromnaya
  • Victor I. Tkachenko
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)

Abstract

A physical model of liquid inclusion motion in an inhomogeneously stressed crystal is stated. The model is based on the phenomenon of induced transitions of atoms of the matrix into the solution and back to the matrix. The dependence of the speed of inclusion motion on its size is obtained and it describes the experimental results with high accuracy. Numerical estimates of the inclusion’s characteristic parameters correspond to tabulated data and results obtained by other authors. The proposed model of induced inclusion motion in a crystal with an inhomogeneous dislocation distribution can be applied to the crystals with inhomogeneity of another nature.

Keywords

Crystallization Solution Inhomogeneously stressed crystal Liquid inclusions Induced motion 

Notes

Acknowledgements

A part of this research is based on the Cooperative Research Projects of Research Center for Biomedical Engineering, Japan: “Radiation-induced motion of liquid inclusions in crystals” (No 2076) and “Formation of a quasiperiodic relief on vicinal surfaces“ (No 2077), adopted as the 2019 Cooperative Research at Research Institute of Electronics, Shizuoka University.

References

  1. 1.
    McPherson, A., Kuznetsov, Y.G.: Mechanisms, kinetics, impurities and defects: consequences in macromolecular crystallization. Acta Crystallographica F 70(4), 384–403 (2014)CrossRefGoogle Scholar
  2. 2.
    Lorentz, H., Beckmann, W.: Purification by crystallization. In: Beckmann, W. (ed.) Crystallization: Basics Concepts and Industrial Applications, pp. 129–149. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2013)Google Scholar
  3. 3.
    Bobo, E., Lefez, B., Caumon, M.-C., Petit, S., Coquerel, G.: Evidence of two types of fluid inclusions in single crystals. CrystEngComm 18(28), 5287–5295 (2016)CrossRefGoogle Scholar
  4. 4.
    Geguzin, Ya.E., Krivoglaz, M.A.: Migration of macroscopic inclusions in solids. Translated from Russian, Studies in Soviet Sciences, Consultants Bureau, New York (1973)CrossRefGoogle Scholar
  5. 5.
    Anthony, T.R., Cline, H.E.: Thermal migration of liquid droplets through solids. J. Appl. Phys. 42(9), 3380–3387 (1971)CrossRefGoogle Scholar
  6. 6.
    Kruzhanov, V.S., Podshyvalova, O.V.: Defining the kinetic coefficients of dissolution using the experimental data on the motion of liquid inclusions in the crystals. Sov. Crystallography 35(6), 1534–1539 (1990) [in Russian Oпpeдeлeниe кинeтичecкиx кoэффициeнтoв pacтвopeния из oпытoв пo движeнию жидкиx включeний в кpиcтaллax]Google Scholar
  7. 7.
    Boudreau, A.: Hydromagmatic processes and platinum-group element deposits in layered intrusions. Cambridge University Press, Cambridge (2019)CrossRefGoogle Scholar
  8. 8.
    Popp, T., Kern, H.: Ultrasonic wave velocities, gas permeability and porosity in natural and granular rock salt. Phys. Chem. Earth 23(3), 373–378 (1998)CrossRefGoogle Scholar
  9. 9.
    Nikitin, A.N., Pocheptsova, O.A., Matthies, S.: Aspects of the thermal and transport properties of crystalline salt in designing radioactive waste storages in halogen formations. Crystallogr. Rep. 55(3), 450–457 (2010)CrossRefGoogle Scholar
  10. 10.
    Nikitin, A.N., Kulakovsky, A.L., Rodkin, M.V., Yurchenko, O.A., Ivankina, T.I., Vasin, R.N.: About some mechanisms of rock permeability in connection with geoecological safety of highly-radioactive waste storages. Geophys. Res. 6, 85–95 (2006) [IPE of RAS, Moscow, in Russian O нeкoтopыx мexaнизмax пpoницaeмocти гopныx пopoд в cвязи c гeoэкoлoгичecкoй бeзoпacнocтью xpaнилищ BAO]Google Scholar
  11. 11.
    Dzyuba, A.S.: Motion of a macroscopic inclusion in the field of structural inhomogeneity in a crystal. Sov. Solid State Physics 19(1), 78–82 (1977) [in Russian Движeниe мaкpocкoпичecкoгo включeния в пoлe cтpyктypнoй нeoднopoднocти в кpиcтaллe]Google Scholar
  12. 12.
    Kruzhanov, V.S., Podshyvalova, O.V.: Motion of liquid inclusions in the crystal caused by radiation defects. Sov. Solid State Phys. 32(2), 373–378 (1990) [in Russian Движeниe жидкиx включeний в кpиcтaллe, oбycлoвлeннoe paдиaциoнными дeфeктaми]Google Scholar
  13. 13.
    Landau, L.D., Lifshitz, E.M.: Statistical physics. Volume 5 of Course of theoretical physics. 3rd edn. Pergamon Press (1980)Google Scholar
  14. 14.
    Volmer, M.: Kinetik der Phasenbildung. Steinkopf Verlag, Dresden und Leipzig (1939)Google Scholar
  15. 15.
    Buckley, H.E.: Crystal growth. Wiley, New York (1954)Google Scholar
  16. 16.
    Burton, W.K., Cabrera, N., Frank, F.C.: The growth of crystals and the equilibrium structure of their surfaces, Philos. Trans. R. Soc. London, A 243 (866), 299–358 (1951)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Chernov, A.A.: The spiral growth of crystals. Sov. Phys. Usp. 4(1), 116–148 (1961)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Einstein, A.: Zur Quantentheorie der Strahlung. Mitteilungen der Physikalischen Gesellschaft Zürich 18 (1916)Google Scholar
  19. 19.
    Chernov, A.A.: Modern crystallography III. Crystal growth with contributions by Givargizov, E.I., Bagdasarov, K.S., Kuznetsov, V.A., Demianets, L.N., Lobachev, A.N. Springer-verlag, Berlin, Heidelberg, New York, Tokyo (1984)Google Scholar
  20. 20.
    Kuklin, V.M.: On the emission processes in nonequilibrium media. The Journal of Kharkov National University (Physical series “Nuclei, Particles, Fields”) 933(4/48), 4–27 (2010) [in Russian O пpoцeccax излyчeния в нepaвнoвecныx cpeдax]Google Scholar
  21. 21.
    Chemical Equations, http://chemequations.com/en/
  22. 22.
    Hirth, J., Lothe, J.: Theory of Dislocations. 2nd edn. John Wiley & Sons, Inc. (1982)Google Scholar
  23. 23.
    Betz, A.: Die Windmühlen im Lichte neuerer Forschung. Die Naturwissenschaften 15(46), 905–914 (1927)CrossRefGoogle Scholar
  24. 24.
    Gauch, H.G.: Scientific Method in Practice. Cambridge University Press, Cambridge (2003)Google Scholar
  25. 25.
    Dzyuba, A.S., Gordeeva, T.F.: The effect of dislocations on the inclusion shape in a crystal. Sov. Solid State Phys. 17(1), 307–309 (1975) [in Russian Bлияниe диcлoкaций нa фopмy включeния в кpиcтaллe]Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Oleksandr P. Kulyk
    • 1
    Email author
  • Leonid A. Bulavin
    • 2
  • Stella F. Skoromnaya
    • 3
  • Victor I. Tkachenko
    • 1
    • 3
  1. 1.School of Physics and EnergyV.N Karazin Kharkiv National UniversityKharkivUkraine
  2. 2.Faculty of PhysicsTaras Shevchenko National University of KyivKievUkraine
  3. 3.National Science Center “Kharkiv Institute of Physics and Technology” of the National Academy of Sciences of UkraineKharkivUkraine

Personalised recommendations