Advertisement

Radiation Patterns of Double DNA-Like Helices as Elements of Metamaterials and Antenna Systems

  • Ivan MikhalkaEmail author
  • Igor Semchenko
  • Sergei Khakhomov
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 101)

Abstract

In this paper a double DNA-like helix as a promising element of metamaterials, metasurfaces and antenna systems for various frequency ranges is considered. The article demonstrates the possibility of creating the required radiation pattern of such a helix, excited by a plane electromagnetic wave by changing its angle of incidence. It is shown, that an incident wave at some angle can activate two wave modes in a helix, each of them propagates with its own phase velocity, and responsible for a certain type of radiation. This effect can be used in passive antenna devices and metamaterials, where the control of the direction of propagation of the reflected wave without changing the frequency of the excitation is required. In addition, the paper provides an overview of the main properties of cylindrical helical radiators, which in the future can be used in fabrication metamaterials and metasurfaces.

Keywords

DNA-like helix Metamaterial Helical antenna Radiation pattern 

References

  1. 1.
    Asadchy, V., Faniayeu, I., Ra’di, Y., Khakhomov, S., Semchenko, I., Tretyakov, S.: Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption. Phys. Rev. X, 5(3), 031005(1–10) (2015)Google Scholar
  2. 2.
    Asadchy, V., Ra’di, Y., Vehmas, J., Tretyakov, S.: Functional metamirrors using bianisotropic elements. Phys. Rev. Lett. 114(9), 095503, 1–5 (2015)Google Scholar
  3. 3.
    Asadchy, V., Albooyeh, M., Tretyakov, S.: Optical metamirror: all-dielectric frequency selective mirror with fully controllable reflection phase. J. Opt. Soc. Am. B 33(2), A16–A20 (2016)CrossRefGoogle Scholar
  4. 4.
    Asadchy, V., Albooyeh, M., Tcvetkova, S., D´iaz-Rubio, A., Ra’di, Y., Tretyakov, S.: Perfect control of reflection and refraction using spatially dispersive metasurfaces. Phys. Rev. B, 94(7), 075142(1–14) (2016)Google Scholar
  5. 5.
    Asadchy, V., Wickberg, A., D´iaz-Rubio, A., Wegener, M.: Eliminating scattering loss in anomalously reflecting optical metasurfaces. ACS Photonics 4(5), 1264–1270 (2017)CrossRefGoogle Scholar
  6. 6.
    Quevedo-Teruel, O., Chen, H., Díaz-Rubio, A.: Roadmap on metasurfaces. J. Opt. 21(7), 073002 (2019).  https://doi.org/10.1088/2040-8986/ab161dCrossRefGoogle Scholar
  7. 7.
    Semchenko, I., Khakhomov, S., Balmakov, A.: Polarization selectivity of electromagnetic radiation of deoxyribonucleic acid. J. Commun. Technol. Electron. 52(9), 996–1001 (2007).  https://doi.org/10.1134/S1064226907090070CrossRefGoogle Scholar
  8. 8.
    Semchenko, I., Khakhomov, S., Balmakov, A.: Research of artificial DNA-Like structures in microwave: observation of polarization selectivity of reflection of waves. J. Electromagn. Waves Electron. Syst. 4, 66–72 (2009)Google Scholar
  9. 9.
    Semchenko, I., Balmakov, A., Khakhomov, S.: Effect of maximum interaction of circularly polarized electromagnetic waves with the molecule of DNA. J. Autom. Mobile Robot. Intell. Syst. 3(4), 207–209 (2009)Google Scholar
  10. 10.
    Semchenko, I., Khakhomov, S., Balmakov, A.: Polarization selectivity of interaction of DNA molecules with X-ray radiation. Biophysics 55(2), 194–198 (2010).  https://doi.org/10.1134/S0006350910020053CrossRefGoogle Scholar
  11. 11.
    Semchenko, I., Khakhomov, S., Balmakov, A.: Polarization selectivity of artificial anisotropic structures based on DNA-like helices. Crystallogr. Rep. 55(6), 921–926 (2010).  https://doi.org/10.1134/S1063774510060040CrossRefGoogle Scholar
  12. 12.
    Semchenko, I., Khakhomov, S., Samofalov, A., Songsong, Q.: The equilibrium state of bifilar helix as element of metamaterials. Japanese J. Appl. Phys. Conf. Proc. 4, 011112-1–011112-6 (2016)Google Scholar
  13. 13.
    Semchenko, I., Khakhomov, S., Balmakov, A.: Electromagnetic model of DNA: observation of polarization selectivity of radiation. In: The 6th International Conference on Global Research and Education Inter-Academia 2007: proceedings, vol. 1, Hamamatsu, Japan: Shizuoka University, pp. 136–145 (2007)Google Scholar
  14. 14.
    Serdyukov, A., Semchenko, I., Tretyakov, S., Sihvola, A.: Electromagnetics of Bi-Anisotropic Materials - Theory and Application, vol. 11. Gordon and Breach Science Publishers, Amsterdam (2001)Google Scholar
  15. 15.
    Yurtsev, O., Runov, A., Kazarin, A.: The Helical Antennas. Sovietskoye radio, Moscow (1974)Google Scholar
  16. 16.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 2nd ed. Wiley (1997)Google Scholar
  17. 17.
    Karnaushenko, D.M., Karnaushenko, D., Makarov, D., Schmidt, O.: Compact helical antenna for smart implant applications. NPG Asia Mater. (2015)  https://doi.org/10.1038/am.2015.53CrossRefGoogle Scholar
  18. 18.
    Savelyev, I., Zyryanova, N., Polesskaya, O., O’Mealy, C., Myakishev-Rempel, M.: On the DNA resonance code (2018).  https://doi.org/10.13140/RG.2.2.13874.86720
  19. 19.
    Marshall, R.: Generalized macro level models of amino acid sequences using passive electrical circuits. In: Proceedings IWBBIO, pp. 608–622 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Francisk Skorina Gomel State UniversityGomelBelarus

Personalised recommendations