Advertisement

Towards a Framework Air Pollution Monitoring System Based on IoT Technology

  • Anass SouilkatEmail author
  • Khalid Mousaid
  • Nourdinne Abghour
  • Mohamed Rida
  • Amina Elomri
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

One of the most discussed and concerning environmental issues nowadays is air pollution. Fast-growing population and urbanization have resulted in deteriorated air quality in urban areas. Furthermore, heavy transportation help contributes to poor air quality, which can cause damages to human health due to prolonged exposure and inhalation of pollutants. Therefore, there has been a growing interest in developing a system for monitoring air quality using big sensor data analytics. The systems for inferring air quality are proposed to help inform the public with real time air pollution data and guide them in making daily decisions affecting their respiratory health. This paper presents an IoT-Based framework for environmental pollution monitoring and control system that can detect and monitor the existence of harmful gases in the environment using Big Data analytics. Integration of IoT technology with big data analytics creates an autonomic air pollution monitoring system that has great potential to assist in controlling air quality.

Keywords

Pollution Health risks Environmental factors Real-time monitoring Internet of Thing (IoT) Air quality City dynamics Human mobility 

References

  1. 1.
    Ang, L.M., Seng, K.P.: Big sensor data applications in urban environments. Big Data Res. 4, 1–12 (2016)CrossRefGoogle Scholar
  2. 2.
    Huang, T., Lan, L., Fang, X., An, P., Min, J., Wang, F.: Promises and challenges of big data computing in health sciences. Big Data Res. 2(1), 2–11 (2015)CrossRefGoogle Scholar
  3. 3.
    Wiesner, M., Pfeifer, D.: Health recommender systems: concepts, requirements, technical basics and challenges. Int. J. Environ. Res. Public Health 11(3), 2580–2607 (2014)CrossRefGoogle Scholar
  4. 4.
    Duan, L., Street, W.N., Xu, E.: Healthcare information systems: data mining methods in the creation of a clinical recommender system. Enterp. Inf. Syst. 5(2), 169–181 (2011)CrossRefGoogle Scholar
  5. 5.
    Hoens, T.R., Blanton, M., Steele, A., Chawla, N.V.: Reliable medical recommendation systems with patient privacy. ACM Trans. Intell. Syst. Technol. (TIST) 4(4), 67 (2013)Google Scholar
  6. 6.
    Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L.: Detecting influenza epidemics using search engine query data. Nature 457(7232), 1012 (2009)CrossRefGoogle Scholar
  7. 7.
    Carneiro, H.A., Mylonakis, E.: Google trends: a web-based tool for real-time surveillance of disease outbreaks. Clin. Infect. Dis. 49(10), 1557–1564 (2009)CrossRefGoogle Scholar
  8. 8.
    Dugas, A.F., Jalalpour, M., Gel, Y., Levin, S., Torcaso, F., Igusa, T., Rothman, R.E.: Influenza forecasting with Google flu trends. PLoS ONE 8(2), e56176 (2013)CrossRefGoogle Scholar
  9. 9.
    Signorini, A., Segre, A.M., Polgreen, P.M.: The use of Twitter to track levels of disease activity and public concern in the US during the influenza A H1N1 pandemic. PLoS ONE 6(5), e19467 (2011)CrossRefGoogle Scholar
  10. 10.
    Jie, Y.: Is your food safe. New ‘Smart Chopsticks’ can tell in: China real time. Wall Street J. (2014)Google Scholar
  11. 11.
    Zheng, Y., Liu, F., Hsieh, H.-P.: U-air: when urban air quality inference meets big data. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1436–1444. ACM (2013)Google Scholar
  12. 12.
    Zheng, Y., Chen, X., Jin, Q., Chen, Y., Qu, X., Liu, X., Chang, E., Ma, W.-Y., Rui, Y., Sun, W.: A cloud-based knowledge discovery system for monitoring fine-grained air quality. MSR-TR-2014–40, Technical report (2014)Google Scholar
  13. 13.
    Liu, H., Chen, Y.-F., Lin, T.-S., Lai, D.-W., Wen, T.-H., Sun, C.-H., Juang, J.-Y., Jiang, J.-A.: Developed urban air quality monitoring system based on wireless sensor networks. In: 2011 Fifth International Conference on Sensing Technology (ICST), pp. 549–554. IEEE (2011)Google Scholar
  14. 14.
    Ong, B.T., Sugiura, K., Zettsu, K.: Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data. In: 2014 IEEE International Conference on Big Data (Big Data), pp. 760–765. IEEE (2014)Google Scholar
  15. 15.
    Hasenfratz, D., Saukh, O., Walser, C., Hueglin, C., Fierz, M., Beutel, T., Arn, J., Thiele, L.: Deriving high-resolution urban air pollution maps using mobile sensor nodes. Pervasive Mob. Comput. 16, 268–285 (2015)CrossRefGoogle Scholar
  16. 16.
    Jiang, P., Winkley, J., Zhao, C., Munnoch, R., Min, G., Yang, L.T.: An intelligent information forwarder for healthcare big data systems with distributed wearable sensors. IEEE Syst. J. 10(3), 1147–1159 (2016)CrossRefGoogle Scholar
  17. 17.
    Sendra, S., Granell, E., Lloret, J., Rodrigues, J.J.: Smart collaborative mobile system for taking care of disabled and elderly people. Mob. Netw. Appl. 19(3), 287–302 (2014)CrossRefGoogle Scholar
  18. 18.
    González-Valenzuela, S., Chen, M., Leung, V.C.: Mobility support for health monitoring at home using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 15(4), 539–549 (2011)CrossRefGoogle Scholar
  19. 19.
    McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D.J., Barton, D.: Big data: the management revolution. Harvard Bus. Rev. 90(10), 60–68 (2012)Google Scholar
  20. 20.
    Raaschou-Nielsen, O., Andersen, Z.J., Beelen, R., Samoli, E., Stafoggia, M., Weinmayr, G., Hoffmann, B., Fischer, P., Nieuwenhuijsen, M.J., Brunekreef, B., Xun, W.W.: Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The lancet oncology 14(9), 813–822 (2013)CrossRefGoogle Scholar
  21. 21.
    Lee, B.J., Kim, B., Lee, K.: Air pollution exposure and cardiovascular disease. Toxicol. Res. 30(2), 71 (2014)CrossRefGoogle Scholar
  22. 22.
    Urban air pollution linked to birth defects. J. Environ. Health 65, 47–48 (2002)Google Scholar
  23. 23.
    Hansen, C.A., Barnett, A.G., Jalaludin, B.B., Morgan, G.G.: Ambient air pollution and birth defects in Brisbane, Australia. PLoS ONE 4(4), e5408 (2009)CrossRefGoogle Scholar
  24. 24.
    Vinikoor-Imler, L.C., Davis, J.A., Meyer, R.E., Luben, T.J.: Early prenatal exposure to air pollution and its associations with birth defects in a state-wide birth cohort from North Carolina. Birth Defects Res. A: Clin. Mol. Teratol. 97(10), 696–701 (2013)CrossRefGoogle Scholar
  25. 25.
    Rathore, M.M., Ahmad, A., Paul, A., Rho, S.: Urban planning and building smart cities based on the internet of things using big data analytics. Comput. Netw. 101, 63–80 (2016)CrossRefGoogle Scholar
  26. 26.
    Environmental Protection Administration Executive Yuan R.O.C. (Taiwan) official website. http://210.69.101.63/taqm/en/PsiMap.aspx. Accessed 26 July 2019
  27. 27.
    Balaji, S., Nathani, K., Santhakumar, R.: IoT technology, applications and challenges: a contemporary survey. Wirel. Pers. Commun. 1–26 (2019)Google Scholar
  28. 28.
    Hu, Z., Bai, Z., Yang, Y., Zheng, Z., Bian, K., Song, L.: UAV aided aerial-ground IoT for air quality sensing in smart city: architecture, technologies, and implementation. IEEE Netw. 33(2), 14–22 (2019)CrossRefGoogle Scholar
  29. 29.
    Hasenfratz, D., Saukh, O., Sturzenegger, S., Thiele, L.: Participatory air pollution monitoring using smartphones. Mob. Sens. 1, 1–5 (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anass Souilkat
    • 1
    Email author
  • Khalid Mousaid
    • 1
  • Nourdinne Abghour
    • 1
  • Mohamed Rida
    • 1
  • Amina Elomri
    • 1
  1. 1.LIMSAD Labs, Faculty of Sciences Ain ChockHassan II University of CasablancaCasablancaMorocco

Personalised recommendations