Advertisement

Towards an Improved CNN Architecture for Brain Tumor Classification

  • Hajji TarikEmail author
  • Masrour Tawfik
  • Douzi Youssef
  • Serrhini Simohammed
  • Ouazzani Jamil Mohammed
  • Jaara El Miloud
Conference paper
Part of the Learning and Analytics in Intelligent Systems book series (LAIS, volume 7)

Abstract

Machine learning (a subset of Artificial Intelligence) automatically creates analytic models that adapt to what they find in the data. Over time, the algorithm “learns” how to deliver more accurate results, whether the goal is to make smarter credit decisions, retail offers, medical diagnoses or fraud detection. The use of Deep Learning technology as a new Machine Learning tools has had considerable success in Digital Image Processing over the past few years. It has been widely used in several of complex problems and has proven to be a powerful solving tool. In this paper we present a comparative study between the famous convolutional architectures (LeNet, AlexNet, ZF Net, GoogLeNet, VGGNet, ResNets, DenseNet) and the Convolutional Neural Networks AsilNet that we propose concerning the classification of Brain Tumors (Aneurysms, Multiple Sclerosis, Hydrocephalus, Stroke, Infections, Cysts, Swelling, Hemorrhage, Bleeding, Inflammation) detected in the Magnetic Resonance Imaging.

Keywords

Artificial Intelligence Machine Learning Deep Learning Magnetic Resonance Imaging Brain tumors Classification 

References

  1. 1.
    Global CEO Survey 2019 - Barometer of corporate opinion. PwC France Publications. https://www.pwc.fr/fr/publications/dirigeants-et-administrateurs/global-ceo-survey/22nd-annual-global-ceo-survey.html
  2. 2.
    Douzi, Y., Kannouf, N., Hajji, T., Boukhana, T., Benabdellah, M., Azizi, A.: Recognition textures of the tumors of the medical pictures by neural networks. J. Eng. Appl. Sci. 13, 4020–4024 (2018)Google Scholar
  3. 3.
    Hajji, T., Itahriouan, Z., Jamil, M.O.: Securing digital images integrity using artificial neural networks. In: Conference Series: Materials Science and Engineering, vol. 353, pp. 12–16 (2018)Google Scholar
  4. 4.
    Tarik, H., Hassani, A., Ouazzani Jamil, M.: Incidents prediction in road junctions using artificial neural networks. In: IOP Conference Series: Materials Science and Engineering, vol. 353 (2017). 10.1088/1757-899X/353/1/012017
  5. 5.
    Tarik, H., Jamil, O.M.: Weather data for the prevention of agricultural production with convolutional neural networks. In: International Conference on Wireless Technologies, Embedded and Intelligent Systems, WITS (2019)Google Scholar
  6. 6.
    Classification of Brain Tumors. American Association of Neurological Surgeons (AANS). https://www.aans.org/en/Media/Classifications-of-Brain-Tumors
  7. 7.
    Mohsen, H., El-Dahshan, E.A., El-Horbaty, E.M., et al.: Classification using deep learning neural networks for brain tumors. Future Comput. Inform. J. 3(1), 68–71 (2018)CrossRefGoogle Scholar
  8. 8.
    Khambhata, K.G., Panchal, S.R.: Multiclass classification of brain tumor in MR images. Int. J. Innov. Res. Comput. Commun. Eng. 4(5), 8982–8992 (2016)Google Scholar
  9. 9.
    Louis, D.N., et al.: The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 131(6), 803–820 (2016). https://link.springer.com/article/10.1007%2Fs00401-016-1545-1CrossRefGoogle Scholar
  10. 10.
    Pan, Y., Huang, W., Lin, Z., Zhu, W., Zhou, J., Wong, J., et al.: Brain tumor grading based on neural networks and convolutional neural networks. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 699–702 (2015)Google Scholar
  11. 11.
    Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A., Ciompi, F., Ghafoorian, M., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRefGoogle Scholar
  12. 12.
    Copyright © 2018. Skymind. DL4J is licensed Apache 2.0. https://deeplearning4j.org/
  13. 13.
    Tharani, S., Yamini, C.: Classification using convolutional neural network for heart and diabetics datasets. Int. J. Adv. Res. Comput. Commun. Eng. 5(12), 417–422 (2016)CrossRefGoogle Scholar
  14. 14.
    Park, A., Chute, C., Rajpurkar, P., et al.: Deep learning–assisted diagnosis of cerebral aneurysms using the HeadXNet Model. JAMA Netw Open, 2(6), e195600 (2019). Published online 07 June.  https://doi.org/10.1001/jamanetworkopen.2019.5600CrossRefGoogle Scholar
  15. 15.
    Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, June 2009Google Scholar
  16. 16.
    Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in neural information processing systems 25, pp. 1097–1105. Curran Associates Inc., USA (2012)Google Scholar
  18. 18.
    Işın, A., Direkoğlu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016)CrossRefGoogle Scholar
  19. 19.
    Havaei, M., Davy, A., Warde-Farley, D., et al.: Brain tumor segmentation with deep neural networks. Med. Image Anal. 35, 18–31 (2017)CrossRefGoogle Scholar
  20. 20.
    Zaharchuk, G., Gong, E., Wintermark, M., Rubin, D., Langlotz, C.P.: Deep learning in neuroradiology. Am. J. Neuroradiol. 39(10), 1776–1784 (2018)CrossRefGoogle Scholar
  21. 21.
    Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016)CrossRefGoogle Scholar
  22. 22.
    Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hajji Tarik
    • 1
    Email author
  • Masrour Tawfik
    • 2
  • Douzi Youssef
    • 3
  • Serrhini Simohammed
    • 4
  • Ouazzani Jamil Mohammed
    • 1
  • Jaara El Miloud
    • 4
  1. 1.Laboratoire des Systèmes et Environnements Durables (SED)Université Privée de Fès (UPF)FèsMorocco
  2. 2.Artificial Intelligence for Engineering Sciences Team, National School of Arts and CraftsMoulay Ismail UniversityMeknesMorocco
  3. 3.Laboratoire d’Arithmétique, Calcul Scientifique et Applications (ACSA-FSO), Faculté des Sciences d’Oujda (FSO)Université Mohammed Premier (UMP)OujdaMorocco
  4. 4.Laboratoire de recherche en informatique (LARi), Faculté Des Sciences D’Oujda (FSO)Universite Mohammed Premier (UMP)OujdaMorocco

Personalised recommendations