Advertisement

Some Characterization Problems Related to Sheffer Polynomial Sets

  • Hamza ChaggaraEmail author
  • Radhouan Mbarki
  • Salma Boussorra
Conference paper
  • 46 Downloads
Part of the Tutorials, Schools, and Workshops in the Mathematical Sciences book series (TSWMS)

Abstract

In this work, we show some properties of Sheffer polynomials arising from quasi-monomiality. We survey characterization problems dealing with d-orthogonal polynomial sets of Sheffer type. We revisit some families in the literature and we state an explicit formula giving the exact number of Sheffer type d-orthogonal sets. We investigate, in detail, the (d + 1)-fold symmetric case as well as the particular cases d = 1, 2, 3.

Keywords

Sheffer polynomials d-orthogonal polynomials Generating functions (d + 1)-fold symmetric polynomials Quasi-monomiality 

Mathematics Subject Classification (2000)

33C45 44A20 65D20 41A58 

Notes

Acknowledgements

We are much indebted to the organisers, Wolfram Koepf and Mama Foupouagnigni, of the AIMS-Volkswagen Stiftung Workshop on Introduction to Orthogonal Polynomials and Applications, Douala, Cameroon, October 5–12, 2018 for the invitation, the interesting program and the kind hospitality.

The first author would like to extend his appreciation to the Deanship of Scientific Research at King Khalid University for funding his work through research groups program under grant (2019).

References

  1. 1.
    A.I. Aptekarev, Multiple polynomials. J. Comput. Appl. Math. 99, 423–447 (1998)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A.I. Aptekarev, V.A. Kaliaguine, W. Van Assche, Criterion for the resolvent set of non-symmetric tridiagonal operators. Proc. Amer. Math. Soc. 123, 2423–2430 (1995)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Ben Cheikh, On obtaining dual sequences via quasi-monomiality. Georgian Math. J. 9, 413–422 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Y. Ben Cheikh, Some results on quasi-monomiality. Appl. Math. Comput. 141, 63–76 (2003)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Y. Ben Cheikh, N. Ben Romdhane, d-symmetric d-orthogonal polynomials of Brenke type. J. Math. Anal. Appl. 416, 735–747 (2014)Google Scholar
  6. 6.
    Y. Ben Cheikh, M. Gaied, Dunkl-Appell d-orthogonal polynomials. Integral Transform. Spec. Funct. 28, 581–597 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Ben Cheikh, I. Gam, On some operators varying the dimensional parameters of d-orthogonality. Integral Transform. Spec. Funct. 27, 731–746 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Y. Ben Cheikh, A. Ouni, Some generalized hypergeometric d-orthogonal polynomial sets. J. Math. Anal. Appl. 343, 464–478 (2008)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Y. Ben Cheikh, A. Zaghouani, Some discrete d-orthogonal polynomial sets. J. Comput. Appl. Math. 156, 253–263 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Y. Ben Cheikh, A. Zaghouani, d-orthogonality via generating functions. J. Comput. Appl. Math. 199, 2–22 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. Boukhemis, On the classical 2-orthogonal polynomials sequences of Sheffer-Meixner type. CUBO A Math. J. Univ. Frontera 7, 39–55 (2005)MathSciNetzbMATHGoogle Scholar
  12. 12.
    A. Boukhemis, P. Maroni, Une caractérisation des polynômes strictement 1∕p orthogonaux de type Sheffer. Étude du cas p = 2. J. Math. Approx. Theory. 54, 67–91 (1998)Google Scholar
  13. 13.
    E. Bourreau, Polynômes orthogonaux simultanés et systèmes dynamiques infinis. Ph.D. Thesis Université des Sciences et Technologie de Lille-Lille I. France (2002)Google Scholar
  14. 14.
    M.G. Bruin, Simultaneous Padé approximation and orthogonality, in Polynômes Orthogonaux et Applications, ed. by C. Brezinski, A. Draux, A.P. Magnus, P. Maroni, A. Ronveaux. Lecture Notes in Mathematics, vol. 1171 (Springer, Berlin, 1985), pp. 74–83Google Scholar
  15. 15.
    H. Chaggara, Quasi monomiality and linearization cofficients for Sheffer polynomial sets, in Proceedings of the International Conference: Difference Equations, Special Functions and Orthogonal Polynomials Munich, Germany, 2005. ed. by S. Elaydi, J. Cushing, R. Lasser, V. Papageorgiou, A. Ruffing, W. Van Assche. (Special edition of World Scientific, Singapore, 2007), pp. 90–99Google Scholar
  16. 16.
    H. Chaggara, R. Mbarki, On d-orthogonal polynomials of Sheffer type. J. Diff. Equ. Appl. 24, 1808–1829 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    E. Coussement, W. Van Assche, Multiple orthogonal polynomials associated with the modified Bessel functions of the first kind. Constr. Approx. 19, 237–263 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Douak, The relation of the d-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70, 279–295 (1996)MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Douak, On 2-orthogonal polynomials of Laguerre type. Inter. J. Math. Math. Sci. 22, 29–48 (1999)MathSciNetCrossRefGoogle Scholar
  20. 20.
    K. Douak, P. Maroni, Les polynômes orthogonaux classiques de dimension deux. Analysis 12, 71–107 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H.W. Gould, A.T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials. Duke Math. J. 29, 51–63 (1962)MathSciNetCrossRefGoogle Scholar
  22. 22.
    M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable (Cambridge University Press, Cambridge, 2005)CrossRefGoogle Scholar
  23. 23.
    I. Kubo, Generating functions of exponential type for orthogonal polynomials. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 7, 155–159 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Maroni, L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux. Ann. Fac. Sci. Toulouse Math. 10, 105–139 (1998)CrossRefGoogle Scholar
  25. 25.
    J. Meixner, Orthogonale polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion. J. Lond. Math. Soc. 1, 6–13 (1934)MathSciNetCrossRefGoogle Scholar
  26. 26.
    E.D. Rainville, Special Functions (The Macmillan Company, New York, 1960)zbMATHGoogle Scholar
  27. 27.
    S. Roman, G.C. Rota, The Umbral Calculus. Adv. Math. 27, 95–188 (1978)CrossRefGoogle Scholar
  28. 28.
    A. Saib, On semi-classical d-orthogonal polynomials. Math. Nachr. 286, 1863–1885 (2013)MathSciNetCrossRefGoogle Scholar
  29. 29.
    I.M. Sheffer, Some properties of polynomial sets of type zero. Duke Math. J. 5, 590–622 (1939)MathSciNetCrossRefGoogle Scholar
  30. 30.
    J. Van Iseghem, Approximants de Padé vectoriels. Ph.D. Thesis, Université des Sciences et Techniques de Lille-Flandre-Artois (1987)Google Scholar
  31. 31.
    J. Van Iseghem, Vector orthogonal relations. Vector QD-algorithm. J. Comput. Appl. Math. 19, 141–150 (1987)CrossRefGoogle Scholar
  32. 32.
    S. Varma, Some new d-orthogonal polynomial sets of Sheffer type. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68, 1–10 (2018)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hamza Chaggara
    • 1
    • 2
    Email author
  • Radhouan Mbarki
    • 3
  • Salma Boussorra
    • 2
  1. 1.King Khalid University College of SciencesDepartment of MathematicsAbhaKingdom of Saudi Arabia
  2. 2.École Supérieure des Sciences et de la TechnologieUniversité de SousseSousseTunisia
  3. 3.Institut Préparatoire aux Études d’Ingénieur de MonastirUniversité de MonastirMonastirTunisia

Personalised recommendations