Cascading Failures in Weighted Networks with the Harmonic Closeness

  • Yucheng Hao
  • Limin JiaEmail author
  • Yanhui Wang
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)


In order to effectively enhance the robustness of the network against cascading failures, we adopt the harmonic closeness and the information from neighboring nodes through a weight parameter \( \theta \) and an adjustable parameter \( \delta \) to define the node weight. The simulation results show that in artificial networks the optimal value of \( \theta \) increases while the optimal range of \( \delta \) is almost unchanged, as the proportion of attacked nodes \( f \) increases. In Barabási-Albert networks (BA networks), the bigger the value of \( \delta \) is, the smaller the difference of the node weights is, which is opposite to the observation of Newman-Watts networks (NW networks) and Erdos-Renyi networks (ER networks). Moreover, we find that by attacking the node with the lower load, cascading failures more likely take place for a certain value of \( \delta \), when the value of \( \theta \) or \( f \) is smaller. Another key finding is that no matter what the value of \( f \) is, BA networks with the harmonic closeness are more robust than the ones with the degree and the betweenness. In NW, ER networks, and the US power grid, the harmonic closeness results in the stronger robustness when the value of \( f \) is not small too much. Our work is helpful to design the strategy resisting the occurrence of cascading failures.


Cascading failures Harmonic closeness Node weight Robustness 



This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. 2017JBZ103.


  1. 1.
    Reynolds-Barredo, J.M., Newman, D.E., Carreras, B.A., Dobson, I.: The interplay of network structure and dispatch solutions in power grid cascading failures. Chaos 26(11), 643–652 (2016)CrossRefGoogle Scholar
  2. 2.
    Yağan, O.: Robustness of power systems under a democratic-fiber-bundle-like model. Phys. Rev. E 91(6), 062811 (2015)CrossRefGoogle Scholar
  3. 3.
    Yan, J., Tang, Y.F., He, H.B., Sun, Y.: Cascading failure analysis with DC power flow model and transient stability analysis. IEEE Trans. Power Syst. 30(1), 285–297 (2014)CrossRefGoogle Scholar
  4. 4.
    Yang, Y., Nishikawa, T., Motter, A.E.: Small vulnerable sets determine large network cascades in power grids. Science 358, eaan3184 (2018)CrossRefGoogle Scholar
  5. 5.
    Zhang, J.H., Dai, Y., Zou, K.S., Song, B., Zhang, Z.J.: Vulnerability analysis of the US power grid based on local load-redistribution. Saf. Sci. 80, 156–162 (2015)CrossRefGoogle Scholar
  6. 6.
    Goh, K.I., Kahng, B., Kim, D.: Fluctuation-driven dynamics of the internet topology. Phys. Rev. Lett. 88(10), 108701 (2002)CrossRefGoogle Scholar
  7. 7.
    Qian, Y.S., Wang, B.B., Xue, Y., Zeng, J.W., Wang, N.: A simulation of the cascading failure of a complex network model by considering the characteristics of road traffic conditions. Nonlinear Dyn. 80(1–2), 413–420 (2015)CrossRefGoogle Scholar
  8. 8.
    Wu, J.J., Gao, Z.Y., Sun, H.J.: Effects of the cascading failures on scale-free traffic networks. Phys. A 378(2), 505–511 (2007)CrossRefGoogle Scholar
  9. 9.
    Wu, J.J., Sun, H.J., Gao, Z.Y.: Cascading failures on weighted urban traffic equilibrium networks. Phys. A 386(1), 407–413 (2007)CrossRefGoogle Scholar
  10. 10.
    Massimiliano, Z., Xiaoqian, S., Sebastian, W.: Studying the topology of transportation systems through complex networks: handle with care. J. Adv. Transp. 2018, 1–17 (2018)Google Scholar
  11. 11.
    Shuang, Q., Zhang, M., Yuan, Y.: Node vulnerability of water distribution networks under cascading failures. Reliab. Eng. Syst. Safe. 124, 132–141 (2014)CrossRefGoogle Scholar
  12. 12.
    Wang, Y.C., Zhang, F.P.: Modeling and analysis of under-load-based cascading failures in supply chain networks. Nonlinear Dyn. 92(2), 1–15 (2018)CrossRefGoogle Scholar
  13. 13.
    Zeng, Y., Xiao, R.B.: Modelling of cluster supply network with cascading failure spread and its vulnerability analysis. Int. J. Prod. Res. 52(23), 6938–6953 (2014)CrossRefGoogle Scholar
  14. 14.
    Wang, J.W., Rong, L.L., Zhang, L., Zhang, Z.Z.: Attack vulnerability of scale-free networks due to cascading failures. Phys. A 387(26), 6671–6678 (2008)CrossRefGoogle Scholar
  15. 15.
    Wu, Z.X., Peng, G., Wang, W.X., Chan, S., Wong, E.E.M.: Cascading failure spreading on weighted heterogeneous networks. J. Stat. Mech. 2008, P05013 (2008)Google Scholar
  16. 16.
    Yang, R., Wang, W.X., Lai, Y.C., Chen, G.: Optimal weighting scheme for suppressing cascades and traffic congestion in complex networks. Phys. Rev. E 79, 026112 (2009)CrossRefGoogle Scholar
  17. 17.
    Wang, W.X., Chen, G.: Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008)CrossRefGoogle Scholar
  18. 18.
    Wang, J.W., Rong, L.L.: Robustness of the western United States power grid under edge attack strategies due to cascading failures. Saf. Sci. 49, 807–812 (2011)CrossRefGoogle Scholar
  19. 19.
    Wang, J.W.: Mitigation of cascading failures on complex networks. Nonlinear Dyn. 70(3), 1959–1967 (2012)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Wang, J., Zhang, C., Huang, Y., Xin, C.: Attack robustness of cascading model with node weight. Nonlinear Dyn. 78(1), 37–48 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Liu, J., Xiong, Q.Y., Shi, X., Wang, K., Shi, W.E.: Robustness of complex networks with an improved breakdown probability against cascading failures. Phys. A 456, 302–309 (2016)CrossRefGoogle Scholar
  22. 22.
    Wang, J.W., Rong, L.L.: Cascade-based attack vulnerability on the US power grid. Saf. Sci. 47(10), 1332–1336 (2009)CrossRefGoogle Scholar
  23. 23.
    Wang, J.W., Rong, L.L.: A model for cascading failures in scale-free networks with a breakdown probability. Phys. A 388(7), 1289–1298 (2009)CrossRefGoogle Scholar
  24. 24.
    Holme, P., Kim, B.J., Yoon, C.N., Han, S.K.: Attack vulnerability of complex networks. Phys. Rev. E 65(2), 056109 (2002)CrossRefGoogle Scholar
  25. 25.
    Macdonald, P.J., Almaas, E., Barabási, A.L.: Minimum spanning trees of weighted scale-free networks. Europhys. Lett. 72(2), 308–314 (2005)CrossRefGoogle Scholar
  26. 26.
    Motter, A.E.: Cascade control and defense in complex networks. Phys. Rev. Lett. 93(9), 098701 (2004)CrossRefGoogle Scholar
  27. 27.
    Motter, A.E., Lai, Y.C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)CrossRefGoogle Scholar
  28. 28.
    Mirzasoleiman, B., Babaei, M., Jalili, M., Safari, M.: Cascaded failures in weighted networks. Phys. Rev. E 84, 046114 (2011)CrossRefGoogle Scholar
  29. 29.
    Kim, D., Motter, A.E.: Resource allocation pattern in infrastructure networks. Phys. A: Math. Theor. 41(22), 4539 (2008)MathSciNetGoogle Scholar
  30. 30.
    Dou, B.L., Wang, X.G., Zhang, S.Y.: Robustness of networks against cascading failures. Phys. A 389(11), 2310–2317 (2010)CrossRefGoogle Scholar
  31. 31.
    Buldyrev, S.V., Parshani, R., Paul, G., Stanley, H.E., Havlin, S.: Catastrophic cascade of failures in interdependent networks. Nature 464, 1025–1028 (2010)CrossRefGoogle Scholar
  32. 32.
    Peng, X.Z., Yao, H., Du, J., Wang, Z., Ding, C.: Load-induced cascading failures in interconnected networks. Nonlinear Dyn. 82(1–2), 97–105 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Tian, M., Wang, X.P., Dong, Z.C., Zhu, G.W., Long, J.C., Dai, D.D., Zhang, Q.L.: Cascading failures of interdependent modular scale-free networks with different coupling preferences. Europhys. Lett. 111(1), 18007 (2015)CrossRefGoogle Scholar
  34. 34.
    Tan, F., Xia, Y.X.: Robust-yet-fragile nature of interdependent networks. Phys. Rev. E 91(5), 052809 (2015)CrossRefGoogle Scholar
  35. 35.
    Zhao, Z., Zhang, P., Yang, H.J.: Cascading failures in interconnected networks with dynamical redistribution of loads. Phys. A 433, 204–210 (2015)CrossRefGoogle Scholar
  36. 36.
    Liu, H.R., Hu, Y.L., Yin, R.R., Deng, Y.L.: Cascading failure model of scale-free topology for avoiding node failure. Neurocomputing 260, 443–448 (2017)CrossRefGoogle Scholar
  37. 37.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263(4–6), 341–346 (1999)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Rail Traffic Control and SafetyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations