Advertisement

Suppressing Information Diffusion via Link Blocking in Temporal Networks

  • Xiu-Xiu Zhan
  • Alan Hanjalic
  • Huijuan WangEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)

Abstract

In this paper, we explore how to effectively suppress the diffusion of (mis)information via blocking/removing the temporal contacts between selected node pairs. Information diffusion can be modelled as, e.g., an SI (Susceptible-Infected) spreading process, on a temporal social network: an infected (information possessing) node spreads the information to a susceptible node whenever a contact happens between the two nodes. Specifically, the link (node pair) blocking intervention is introduced for a given period and for a given number of links, limited by the intervention cost. We address the question: which links should be blocked in order to minimize the average prevalence over time? We propose a class of link properties (centrality metrics) based on the information diffusion backbone [19], which characterizes the contacts that actually appear in diffusion trajectories. Centrality metrics of the integrated static network have also been considered. For each centrality metric, links with the highest values are blocked for the given period. Empirical results on eight temporal network datasets show that the diffusion backbone based centrality methods outperform the other metrics whereas the betweenness of the static network, performs reasonably well especially when the prevalence grows slowly over time.

Keywords

Link blocking Link centrality Information diffusion backbone Temporal network SI spreading 

Notes

Acknowledgements

This work has been partially supported by the China Scholarship Council (CSC).

References

  1. 1.
    Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6, 606–620 (2007)CrossRefGoogle Scholar
  2. 2.
    Eagle, N., Pentland, A.S.: Reality mining: sensing complex social systems. Pers. Ubiquit. Comput. 10(4), 255–268 (2006)CrossRefGoogle Scholar
  3. 3.
    Estrada, E.: Communicability in temporal networks. Phys. Rev. E 88(4), 042811 (2013)CrossRefGoogle Scholar
  4. 4.
    Fournet, J., Barrat, A.: Contact patterns among high school students. PLoS One 9(9), e107878 (2014)CrossRefGoogle Scholar
  5. 5.
    Grindrod, P., Parsons, M.C., Higham, D.J., Estrada, E.: Communicability across evolving networks. Phys. Rev. E 83(4), 046120 (2011)CrossRefGoogle Scholar
  6. 6.
    Holme, P.: Modern temporal network theory: a colloquium. Eur. Phys. J. B 88(9), 234 (2015)CrossRefGoogle Scholar
  7. 7.
    Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, C., Li, Q., Van Mieghem, P., Stanley, H.E., Wang, H.: Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88(3), 65 (2015)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, Z., Ren, T., Ma, X., Liu, S., Zhang, Y., Zhou, T.: Identifying influential spreaders by gravity model. Sci. Rep. 9(1), 8387 (2019)CrossRefGoogle Scholar
  10. 10.
    Mastrandrea, R., Fournet, J., Barrat, A.: Contact patterns in a high school: a comparison between data collected using wearable sensors, contact diaries and friendship surveys. PLoS One 10(9), e0136497 (2015)CrossRefGoogle Scholar
  11. 11.
    Michalski, R., Palus, S., Kazienko, P.: Matching organizational structure and social network extracted from email communication. In: International Conference on Business Information Systems, pp. 197–206. Springer (2011)Google Scholar
  12. 12.
    Newman, M.E.: Scientific collaboration networks. ii. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64(1), 016132 (2001)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Peters, L.J., Cai, J.J., Wang, H.: Characterizing temporal bipartite networks-sequential-versus cross-tasking. In: International Conference on Complex Networks and their Applications, pp. 28–39. Springer (2018)Google Scholar
  15. 15.
    Qu, C., Zhan, X., Wang, G., Wu, J., Zhang, Z.K.: Temporal information gathering process for node ranking in time-varying networks. Chaos: Interdisc. J. Nonlinear Sci. 29(3), 033116 (2019)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Rocha, L.E., Masuda, N.: Random walk centrality for temporal networks. New J. Phys. 16(6), 063023 (2014)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Quaggiotto, M., Van den Broeck, W., Régis, C., Lina, B., et al.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8), e23176 (2011)CrossRefGoogle Scholar
  18. 18.
    Takaguchi, T., Sato, N., Yano, K., Masuda, N.: Importance of individual events in temporal networks. New J. Phys. 14(9), 093003 (2012)CrossRefGoogle Scholar
  19. 19.
    Zhan, X.X., Hanjalic, A., Wang, H.: Information diffusion backbones in temporal networks. Sci. Rep. 9(1), 6798 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering, Mathematics, and Computer ScienceDelft University of TechnologyDelftThe Netherlands

Personalised recommendations