Modeling Airport Congestion Contagion by SIS Epidemic Spreading on Airline Networks
Abstract
We model airport congestion contagion as an SIS spreading process on an airport transportation network to explain airport vulnerability. The vulnerability of each airport is derived from the US Airport Network data as its congestion probability. We construct three types of airline networks to capture diverse features such as the frequency and duration of flights. The weight of each link augments its infection rate in SIS spreading process. The nodal infection probability in the meta-stable state is used as estimate the vulnerability of the corresponding airport. We illustrate that our model could reasonably capture the distribution of nodal vulnerability and rank airports in vulnerability evidently better than the random ranking, but not significantly better than using nodal network properties. Such congestion contagion model not only allows the identification of vulnerable airports but also opens the possibility to reduce global congestion via congestion reduction in few airports.
Keywords
Airline transportation network Epidemic spreading Network vulnerabilityNotes
Acknowledgement
This work is supported by Netherlands Organisation for Scientific Research NWO (TOP Grant no. 612.001.802).
References
- 1.Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks, vol. 598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50806-1CrossRefzbMATHGoogle Scholar
- 2.Zanin, M., Lillo, F.: Modelling the air transport with complex networks: a short review. Eur. Phys. J. Spec. Top. 215(1), 5–21 (2013). https://doi.org/10.1140/epjst/e2013-01711-9CrossRefGoogle Scholar
- 3.Baspinar, B., Koyuncu, E.: A data-driven air transportation delay propagation model using epidemic process models. J. Aero. Eng. (2016). https://doi.org/10.1155/2016/4836260CrossRefGoogle Scholar
- 4.Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925 (2015)MathSciNetCrossRefGoogle Scholar
- 5.Van Mieghem, P., Omic, J., Kooij, R.: Virus spread in networks. IEEE TNET 17(1), 1–14 (2009). https://doi.org/10.1109/TNET.2008.925623CrossRefGoogle Scholar
- 6.Li, D., Qin, P., Wang, H., Liu, C., Jiang, Y.: Epidemics on interconnected lattices. EPL 105(6), 68004 (2014). https://doi.org/10.1209/0295-5075/105/68004CrossRefGoogle Scholar
- 7.Qu, B., Wang, H.: SIS epidemic spreading with correlated heterogeneous infection rates. J. Phys. A 472, 13–24 (2017). https://doi.org/10.1016/j.physa.2016.12.077MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Qu, B., Wang, H.: SIS epidemic spreading with heterogeneous infection rates. IEEE TNSE 4(3), 177–186 (2017). https://doi.org/10.1109/TNSE.2017.2709786CrossRefzbMATHGoogle Scholar
- 9.Li, C., van de Bovenkamp, R., Van Mieghem, P.: Susceptible-infected-susceptible model: a comparison of N-intertwined and heterogeneous mean-field approximations. Phys. Rev. E 86(2), 026116 (2012). https://doi.org/10.1103/PhysRevE.86.026116CrossRefGoogle Scholar
- 10.Van Mieghem, P.: The N-intertwined SIS epidemic network model. Computing 93(2–4), 147–169 (2011). https://doi.org/10.1007/s00607-011-0155-yMathSciNetCrossRefzbMATHGoogle Scholar
- 11.Li, C., Wang, H., Van Mieghem, P.: Epidemic threshold in directed networks. Phys. Rev. E 88(6), 062802 (2013). https://doi.org/10.1103/PhysRevE.88.062802CrossRefGoogle Scholar
- 12.Yang, Z., Zhou, T.: Epidemic spreading in weighted networks: an edge-based mean-field solution. Phys. Rev. E 85(5), 056106 (2012). https://doi.org/10.1103/PhysRevE.85.056106CrossRefGoogle Scholar
- 13.Lu, D., Yang, S., Zhang, J., Wang, H., Li, D.: Resilience of epidemics for SIS model on networks. Chaos Interdiscip. J. Nonlinear Sci. 27(8), 083105 (2017). https://doi.org/10.1063/1.4997177MathSciNetCrossRefGoogle Scholar
- 14.Qu, B., Li, C., Van Mieghem, P., Wang, H.: Ranking of nodal infection probability in susceptible-infected-susceptible epidemic. Sci. Rep. 7(1), 9233 (2017). https://doi.org/10.1038/s41598-017-08611-9CrossRefGoogle Scholar
- 15.Barat, A., Barrat, A., Barthélemy, M., Pastor-Satorras, R., Vespignani, A.: The archiecture of complex network weights. Proc. Natl. Acad. Sci. U.S.A. 101(11), 3747–3752 (2014). https://doi.org/10.1073/pnas.0400087101CrossRefGoogle Scholar
- 16.Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.: The worldwide air transportation network - anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. U.S.A. 102(22), 7794–7799 (2005). https://doi.org/10.1073/pnas.0407994102MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Reggiani, A., Signoretti, S., Nijkamp, P., Cento, A.: Network measures in civil air transport - a case study of Lufthansa. In: Lecture Notes in Economics and Mathematical Systems, vol. 613, pp. 257–282 (2009). https://doi.org/10.1007/978-3-540-68409-1-14
- 18.Han, D.D., Qian, J.H., Liu, J.G.: Network topology and correlation features affiliated with European airline companies. Phys. A 388(1), 71–81 (2009). https://doi.org/10.1016/j.physa.2008.09.021CrossRefGoogle Scholar
- 19.Fleurquin, P., Ramasco, J.J., Eguiluz, V.M.: Systemic delay propagation in the US airport network. Sci. Rep. 3, 1159 (2013). https://doi.org/10.1038/srep01159 CrossRefGoogle Scholar
- 20.Ciruelos, C., Arranz, A., Etxebarria, I., Peces, S.: Modelling delay propagation trees for scheduled flights. In: USA/Europe Air Traffic Management Research and Development Seminar, vol. 11 (2015)Google Scholar
- 21.Baspinar, B., Koyuncu, E.: A data-driven air transportation delay propagation model using epidemic process models. Int. J. Aerosp. Eng. (2016). https://doi.org/10.1155/2016/4836260CrossRefGoogle Scholar
- 22.Chi, L.P., Cai, X.: Structural changes caused by error and attack tolerance in US airport network. Int. J. Mod. Phys. B 18, 2394–2400 (2004). https://doi.org/10.1142/S0217979204025427CrossRefGoogle Scholar
- 23.Wilkinson, S.M., Dunn, S., Ma, S.: The vulnerability of the European air traffic network to spatial hazards. Nat. Hazards 60(3), 1027–1036 (2012). https://doi.org/10.1007/s11069-011-9885-6CrossRefGoogle Scholar
- 24.Lacasa, L., Cea, M., Zanin, M.: Jamming transition in air transportation networks. J. Phys. A 388(18), 3948–3954 (2009). https://doi.org/10.1016/j.physa.2009.06.005CrossRefGoogle Scholar
- 25.United States Bureau of Transportation Statistics. http://www.transtats.bts.gov
- 26.Wang, H., Li, Q., D’Agostino, G., Havlin, S., Stanley, H.E., Van Mieghem, P.: Effect of the interconnected network structure on the epidemic threshold. Phys. Rev. E 88, 022801 (2013)CrossRefGoogle Scholar
- 27.Gang, Y., Tao, Z., Jie, W., Zhong-Qian, F., Bing-Hong, W.: Epidemic spread in weighted scale-free networks. Chin. Phys. Lett. 22(2), 510 (2005). https://doi.org/10.1088/0256-307x/22/2/068 CrossRefGoogle Scholar
- 28.Odoni, A., De Neufville, R.: Airport Systems: Planning, Design, and Management. McGraw-Hill Professional, New York (2003)Google Scholar
- 29.Dunn, S., Wilkinson, S.M.: Increasing the resilience of air traffic networks using a network graph theory approach. J. Trans. Res. E 90, 39–50 (2016). https://doi.org/10.1016/j.tre.2015.09.011CrossRefGoogle Scholar
- 30.Ciruelos, C., Arranz, A., Etxebarria, I., Peces, S., Campanelli, B., Fleurquin, P., Ramasco, J.J.: Modelling delay propagation trees for scheduled flights. In: Proceedings of the 11th USA/EUROPE Air Traffic Management R&D Seminar, Lisbon, Portugal, pp. 23-26 (2015)Google Scholar
- 31.Li, C., Li, Q., Van Mieghem, P., Stanley, H.E., Wang, H.: Correlation between centrality metrics and their application to the opinion model. Eur. Phys. J. B 88, 65 (2015)MathSciNetCrossRefGoogle Scholar