Skip to main content

Community-Aware Content Diffusion: Embeddednes and Permeability

  • Conference paper
  • First Online:
Complex Networks and Their Applications VIII (COMPLEX NETWORKS 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 881))

Included in the following conference series:

  • 3141 Accesses

Abstract

Viruses, opinions, ideas are different contents sharing a common trait: they need carriers embedded into a social context to spread. Modeling and approximating diffusive phenomena have always played an essential role in a varied range of applications from outbreak prevention to the analysis of meme and fake news. Classical approaches to such a task assume diffusion processes unfolding in a mean-field context, every actor being able to interact with all its peers. However, during the last decade, such an assumption has been progressively superseded by the availability of data modeling the real social network of individuals, thus producing a more reliable proxy for social interactions as spreading vehicles. In this work, following such a trend, we propose alternative ways of leveraging apriori knowledge on mesoscale network topology to design community-aware diffusion models with the aim of better approximate the spreading of content over complex and clustered social tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Implementations of the proposed models are made available through the NDlib python library [4].

References

  1. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  2. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)

    Article  MathSciNet  Google Scholar 

  3. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: 9th ACM SIGKDD, pp. 137–146. ACM (2003)

    Google Scholar 

  4. Rossetti, G., Milli, L., Rinzivillo, S., Sîrbu, A., Pedreschi, D., Giannotti, F.: NDlib: a python library to model and analyze diffusion processes over complex networks. Int. J. Data Sci. Anal. 5(1), 61–79 (2018)

    Article  Google Scholar 

  5. Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)

    Article  Google Scholar 

  6. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Contain. Pap. Math. Phys. Charact. 115(772), 700–721 (1927)

    Article  Google Scholar 

  7. Bass, F.: A new product growth for model consumer durables. Manage. Sci. 15, 215–227 (1969)

    Article  Google Scholar 

  8. Rogers, E.M.: Diffusion of Innovations. Simon and Schuster, New York (2010)

    Google Scholar 

  9. Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: PAKDD, pp. 380–389. Springer (2006)

    Google Scholar 

  10. Bakshy, E., Hofman, J.M., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on Twitter. In: 4th ACM WSDM, pp. 65–74. ACM (2011)

    Google Scholar 

  11. Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.-L.: Structure and tie strengths in mobile communication networks. Natl. Acad. Sci. 104(18), 7332–7336 (2007)

    Article  Google Scholar 

  12. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping community detection in networks: the state-of-the-art and comparative study. ACM Comput. Surv. 45(4), 43 (2013)

    Article  Google Scholar 

  13. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey. ACM Comput. Surv. 51(2), 35 (2018)

    Article  Google Scholar 

  14. Galstyan, A., Cohen, P.: Cascading dynamics in modular networks. Phys. Rev. E 75(3), 036109 (2007)

    Article  Google Scholar 

  15. Gleeson, J.P.: Cascades on correlated and modular random networks. Phys. Rev. E 77(4), 046117 (2008)

    Article  Google Scholar 

  16. Granovetter, M.S.: The strength of weak ties. In: Social Networks, pp. 347–367. Elsevier (1977)

    Google Scholar 

  17. Grabowicz, P.A., Ramasco, J.J., Moro, E., Pujol, J.M., Eguiluz, V.M.: Social features of online networks: the strength of intermediary ties in online social media. PLoS One 7(1), e29358 (2012)

    Article  Google Scholar 

  18. Wu, X., Liu, Z.: How community structure influences epidemic spread in social networks. Phys. A 387(2–3), 623–630 (2008)

    Article  Google Scholar 

  19. Huang, W., Li, C.: Epidemic spreading in scale-free networks with community structure. J. Stat. Mech: Theory Exp. 2007(01), P01014 (2007)

    Article  Google Scholar 

  20. Liu, T., Li, P., Chen, Y., Zhang, J.: Community size effects on epidemic spreading in multiplex social networks. PLoS One 11(3), e0152021 (2016)

    Article  Google Scholar 

  21. Bu, Y., Gregory, S., Mills, H.L.: Efficient local behavioral-change strategies to reduce the spread of epidemics in networks. Phys. Rev. E 88(4), 042801 (2013)

    Article  Google Scholar 

  22. Centola, D.: The spread of behavior in an online social network experiment. Science 329(5996), 1194–1197 (2010)

    Article  Google Scholar 

  23. Nematzadeh, A., Ferrara, E., Flammini, A., Ahn, Y.-Y.: Optimal network modularity for information diffusion. Phys. Rev. Lett. 113(8), 088701 (2014)

    Article  Google Scholar 

  24. Weng, L. Menczer, F., Ahn, Y.-Y.: Predicting successful memes using network and community structure. In: ICWSM (2014)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the European Community’s H2020 Program under the scheme “INFRAIA-1-2014-2015: Research Infrastructures”, grant agreement #654024 “SoBigData: Social Mining & Big Data Ecosystem” (SoBigData: http://www.sobigdata.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Letizia Milli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milli, L., Rossetti, G. (2020). Community-Aware Content Diffusion: Embeddednes and Permeability. In: Cherifi, H., Gaito, S., Mendes, J., Moro, E., Rocha, L. (eds) Complex Networks and Their Applications VIII. COMPLEX NETWORKS 2019. Studies in Computational Intelligence, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-030-36687-2_30

Download citation

Publish with us

Policies and ethics