Advertisement

A Persistent Homology Perspective to the Link Prediction Problem

  • Sumit BhatiaEmail author
  • Bapi Chatterjee
  • Deepak Nathani
  • Manohar Kaul
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)

Abstract

Persistent homology is a powerful tool in Topological Data Analysis (TDA) to capture topological properties of data succinctly at different spatial resolutions. For graphical data, shape and structure of the neighborhood of individual data items (nodes) is an essential means of characterizing their properties. We propose the use of persistent homology methods to capture structural and topological properties of graphs and use it to address the problem of link prediction. We achieve encouraging results on nine different real-world datasets that attest to the potential of persistent homology based methods for network analysis.

References

  1. 1.
    Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003) CrossRefGoogle Scholar
  2. 2.
    Backstrom, L., Leskovec, J.: Supervised random walks: predicting and recommending links in social networks. In: WSDM 2011 (2011)Google Scholar
  3. 3.
    Bauer, U.: Ripser (2018). https://github.com/Ripser/ripser
  4. 4.
    Bhatia, S., Caragea, C., Chen, H.H., Wu, J., Treeratpituk, P., Wu, Z., Khabsa, M., Mitra, P., Giles, C.L.: Specialized research datasets in the citeseer\(^x\) digital library. D-Lib Mag. 18(7/8) (2012)Google Scholar
  5. 5.
    Bhatia, S., Chatterjee, B., Nathani, D., Kaul, M.: Understanding and predicting links in graphs: a persistent homology perspective. arXiv preprint arXiv:1811.04049 (2018)
  6. 6.
    Bhatia, S., Vishwakarma, H.: Know thy neighbors, and more!: studying the role of context in entity recommendation. In: Hypertext (HT), pp. 87–95 (2018)Google Scholar
  7. 7.
    Carstens, C.J., Horadam, K.J.: Persistent homology of collaboration networks. Math. Probl. Eng. 2013, 7 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data. In: International Conference on Information Processing in Medical Imaging, pp. 386–397 (2009)Google Scholar
  9. 9.
    Cohen, S., Zohar, A.: An axiomatic approach to link prediction. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)Google Scholar
  10. 10.
    Coulomb, S., Bauer, M., Bernard, D., Marsolier-Kergoat, M.C.: Gene essentiality and the topology of protein interaction networks. Proc. R. Soc. B: Biol. Sci. 272(1573), 1721–1725 (2005)CrossRefGoogle Scholar
  11. 11.
    Edelsbrunner, H., Harer, J.: Persistent homology-a survey. Contemp. Math. 453, 257–282 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Edelsbrunner, H., Harer, J.: Computational Topology - An Introduction. American Mathematical Society, Providence (2010)zbMATHGoogle Scholar
  13. 13.
    Eisinga, R., Breitling, R., Heskes, T.: The exact probability distribution of the rank product statistics for replicated experiments. FEBS Lett. 587(6), 677–682 (2013)CrossRefGoogle Scholar
  14. 14.
    Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., Robinson, M.D., O’Connor, L., Li, M., et al.: Large-scale mapping of human protein-protein interactions by mass spectrometry. Mol. Syst. Biol. 3(1), 89 (2007)CrossRefGoogle Scholar
  15. 15.
    Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD, pp. 855–864 (2016)Google Scholar
  16. 16.
    Hajij, M., Wang, B., Scheidegger, C., Rosen, P.: Visual detection of structural changes in time-varying graphs using persistent homology. In: PacificVis, pp. 125–134. IEEE (2018)Google Scholar
  17. 17.
    Hoff, P.D., Raftery, A.E., Handcock, M.S.: Latent space approaches to social network analysis. J. Am. Stat. Assoc. 97(460), 1090–1098 (2002)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity, pp. 538–543. ACM (2002)Google Scholar
  19. 19.
    Johnson, D.B.: Efficient algorithms for shortest paths in sparse networks. J. ACM (JACM) 24(1), 1–13 (1977)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Kataria, S., Mitra, P., Bhatia, S.: Utilizing context in generative Bayesian models for linked corpus. In: AAAI, vol. 10, p. 1 (2010)Google Scholar
  21. 21.
    Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)CrossRefGoogle Scholar
  22. 22.
    Kerber, M., Morozov, D., Nigmetov, A.: Geometry helps to compare persistence diagrams. In: 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX), pp. 103–112. SIAM (2016)Google Scholar
  23. 23.
    Leskovec, J., Backstrom, L., Kumar, R., Tomkins, A.: Microscopic evolution of social networks. In: KDD, pp. 462–470 (2008)Google Scholar
  24. 24.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1) (2007)CrossRefGoogle Scholar
  25. 25.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  26. 26.
    Lu, Q., Getoor, L.: Link-based classification. In: Fawcett, T., Mishra, N. (eds.) ICML, pp. 496–503. AAAI Press (2003). http://www.aaai.org/Library/ICML/2003/icml03-066.php
  27. 27.
    McAuley, J., Leskovec, J.: Learning to discover social circles in ego networks. In: NIPS, pp. 548–556 (2012)Google Scholar
  28. 28.
    McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Annu. Rev. Sociol. 27(1), 415–444 (2001)CrossRefGoogle Scholar
  29. 29.
    Milne, D., Witten, I.: An effective, low-cost measure of semantic relatedness obtained from Wikipedia links. In: AAAI Workshop on Wikipedia and Artificial Intelligence: An Evolving Synergy, pp. 25–30 (2008)Google Scholar
  30. 30.
    Misra, V., Bhatia, S.: Bernoulli embeddings for graphs. In: AAAI, pp. 3812–3819 (2018)Google Scholar
  31. 31.
    Nagarajan, M., et al.: Predicting future scientific discoveries based on a networked analysis of the past literature. In: KDD, pp. 2019–2028. ACM (2015)Google Scholar
  32. 32.
    Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Pal, S., Moore, T.J., Ramanathan, R., Swami, A.: Comparative topological signatures of growing collaboration networks. In: Workshop on Complex Networks CompleNet, pp. 201–209. Springer (2017)Google Scholar
  34. 34.
    Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: KDD, pp. 701–710 (2014)Google Scholar
  35. 35.
    Ribeiro, L.F., Saverese, P.H., Figueiredo, D.R.: struc2vec: learning node representations from structural identity. In: KDD, pp. 385–394 (2017)Google Scholar
  36. 36.
    Sarkar, P., Chakrabarti, D., Moore, A.W.: Theoretical justification of popular link prediction heuristics. In: IJCAI (2011)Google Scholar
  37. 37.
    Šubelj, L., Bajec, M.: Robust network community detection using balanced propagation. Eur. Phys. J. B 81(3), 353–362 (2011)CrossRefGoogle Scholar
  38. 38.
    Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information network embedding. In: WWW, pp. 1067–1077 (2015)Google Scholar
  39. 39.
    Tang, L., Liu, H.: Relational learning via latent social dimensions. In: KDD, pp. 817–826 (2009)Google Scholar
  40. 40.
    Turner, K.: Generalizations of the rips filtration for quasi-metric spaces with persistent homology stability results. arXiv preprint arXiv:1608.00365 (2016)
  41. 41.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440 (1998)CrossRefGoogle Scholar
  42. 42.
    Zhu, X.: Persistent homology: an introduction and a new text representation for natural language processing. In: IJCAI (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sumit Bhatia
    • 1
    Email author
  • Bapi Chatterjee
    • 2
  • Deepak Nathani
    • 3
  • Manohar Kaul
    • 3
  1. 1.IBM Research AINew DelhiIndia
  2. 2.Institute of Science and TechnologyKlosterneuburgAustria
  3. 3.Indian Institute of Technology, HyderabadSangareddyIndia

Personalised recommendations