Rejection-Based Simulation of Non-Markovian Agents on Complex Networks

  • Gerrit GroßmannEmail author
  • Luca Bortolussi
  • Verena Wolf
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)


Stochastic models in which agents interact with their neighborhood according to a network topology are a powerful modeling framework to study the emergence of complex dynamic patterns in real-world systems. Stochastic simulations are often the preferred—sometimes the only feasible—way to investigate such systems. Previous research focused primarily on Markovian models where the random time until an interaction happens follows an exponential distribution.

In this work, we study a general framework to model systems where each agent is in one of several states. Agents can change their state at random, influenced by their complete neighborhood, while the time to the next event can follow an arbitrary probability distribution. Classically, these simulations are hindered by high computational costs of updating the rates of interconnected agents and sampling the random residence times from arbitrary distributions.

We propose a rejection-based, event-driven simulation algorithm to overcome these limitations. Our method over-approximates the instantaneous rates corresponding to inter-event times while rejection events counter-balance these over-approximations. We demonstrate the effectiveness of our approach on models of epidemic and information spreading.


Gillespie simulation Complex networks Epidemic modeling Rejection sampling Multi-agent system 



We thank Guillaume St-Onge for helpful comments on non-Markovian dynamics. This research was been partially funded by the German Research Council (DFG) as part of the Collaborative Research Center “Methods and Tools for Understanding and Controlling Privacy”.


  1. 1.
    Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)zbMATHGoogle Scholar
  2. 2.
    Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529(2), 199–264 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Kiss, I.Z., Miller, J.C., Simon, P.L.: Mathematics of Epidemics on Networks. Forthcoming in Springer TAM Series, Cham (2016)Google Scholar
  5. 5.
    Porter, M., Gleeson, J.: Dynamical Systems on Networks: A Tutorial, vol. 4. Springer, Cham (2016)CrossRefGoogle Scholar
  6. 6.
    Rodrigues, H.S.: Application of SIR epidemiological model: new trends. arXiv preprint. arXiv:1611.02565 (2016)
  7. 7.
    Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6(11), 888 (2010)CrossRefGoogle Scholar
  8. 8.
    Zhao, L., Wang, J., Chen, Y., Wang, Q., Cheng, J., Cui, H.: SIHR rumor spreading model in social networks. Phys. A Stat. Mech. Appl. 391(7), 2444–2453 (2012)CrossRefGoogle Scholar
  9. 9.
    Goltsev, A.V., De Abreu, F.V., Dorogovtsev, S.N., Mendes, J.F.F.: Stochastic cellular automata model of neural networks. Phys. Rev. E 81(6), 061921 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Meier, J., Zhou, X., Hillebrand, A., Tewarie, P., Stam, C.J., Van Mieghem, P.: The epidemic spreading model and the direction of information flow in brain networks. NeuroImage 152, 639–646 (2017) CrossRefGoogle Scholar
  11. 11.
    Gan, C., Yang, X., Liu, W., Zhu, Q., Zhang, X.: Propagation of computer virus under human intervention: a dynamical model. Discret. Dyn. Nat. Soc. 2012 (2012)CrossRefGoogle Scholar
  12. 12.
    May, R.M., Arinaminpathy, N.: Systemic risk: the dynamics of model banking systems. J. R. Soc. Interface 7(46), 823–838 (2009)CrossRefGoogle Scholar
  13. 13.
    Peckham, R.: Contagion: epidemiological models and financial crises. J. Public Health 36(1), 13–17 (2013)CrossRefGoogle Scholar
  14. 14.
    Masuda, N., Rocha, L.E.C.: A Gillespie algorithm for non-Markovian stochastic processes. SIAM Rev. 60(1), 95–115 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lloyd, A.L.: Realistic distributions of infectious periods in epidemic models: changing patterns of persistence and dynamics. Theor. Popul. Biol. 60(1), 59–71 (2001)CrossRefGoogle Scholar
  16. 16.
    Yang, G.L.: Empirical study of a non-Markovian epidemic model. Math. Biosci. 14(1–2), 65–84 (1972)CrossRefGoogle Scholar
  17. 17.
    Blythe, S.P., Anderson, R.M.: Variable infectiousness in HFV transmission models. Math. Med. Biol. J. IMA 5(3), 181–200 (1988)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Hollingsworth, T.D., Anderson, R.M., Fraser, C.: HIV-1 transmission, by stage of infection. J. Infect. Dis. 198(5), 687–693 (2008)CrossRefGoogle Scholar
  19. 19.
    Feng, Z., Thieme, H.R.: Endemic models for the spread of infectious diseases with arbitrarily distributed disease stages I: general theory. SIAM J. Appl. Math. 61(3), 803–833 (2000)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Barabasi, A.-L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039), 207 (2005)CrossRefGoogle Scholar
  21. 21.
    Vázquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.-I., Kondor, I., Barabási, A.-L.: Modeling bursts and heavy tails in human dynamics. Phys. Rev. E 73(3), 036127 (2006)CrossRefGoogle Scholar
  22. 22.
    Softky, W.R., Koch, C.: The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13(1), 334–350 (1993)CrossRefGoogle Scholar
  23. 23.
    Boguná, M., Lafuerza, L.F., Toral, R., Serrano, M.A.: Simulating non-Markovian stochastic processes. Phys. Rev. E 90(4), 042108 (2014)CrossRefGoogle Scholar
  24. 24.
    Cota, W., Ferreira, S.C.: Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks. Comput. Phys. Commun. 219, 303–312 (2017)CrossRefGoogle Scholar
  25. 25.
    St-Onge, G., Young, J.-G., Hébert-Dufresne, L., Dubé, L.J.: Efficient sampling of spreading processes on complex networks using a composition and rejection algorithm. arXiv preprint. arXiv:1808.05859 (2018)
  26. 26.
    Großmann, G., Wolf, V.: Rejection-based simulation of stochastic spreading processes on complex networks. In: International Workshop on Hybrid Systems Biology, pp. 63–79. Springer, Cham (2019)CrossRefGoogle Scholar
  27. 27.
    Cox, D.R.: Renewal Theory (1962)Google Scholar
  28. 28.
    Pasupathy, R.: Generating Homogeneous Poisson Processes. Wiley Encyclopedia of Operations Research and Management Science, Hoboken (2010)Google Scholar
  29. 29.
    Kiss, I.Z., Röst, G., Vizi, Z.: Generalization of pairwise models to non-Markovian epidemics on networks. Phys. Rev. Lett. 115(7), 078701 (2015)CrossRefGoogle Scholar
  30. 30.
    Pellis, L., House, T., Keeling, M.J.: Exact and approximate moment closures for non-Markovian network epidemics. J. Theor. Biol. 382, 160–177 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Jo, H.-H., Perotti, J.I., Kaski, K., Kertész, J.: Analytically solvable model of spreading dynamics with non-Poissonian processes. Phys. Rev. X 4(1), 011041 (2014)Google Scholar
  32. 32.
    Sherborne, N., Miller, J.C., Blyuss, K.B., Kiss, I.Z.: Mean-field models for non-Markovian epidemics on networks: from edge-based compartmental to pairwise models. arXiv preprint. arXiv:1611.04030 2016
  33. 33.
    Starnini, M., Gleeson, J.P., Boguñá, M.: Equivalence between non-Markovian and Markovian dynamics in epidemic spreading processes. Phys. Rev. Lett. 118(12), 128301 (2017)CrossRefGoogle Scholar
  34. 34.
    Vestergaard, C.L., Génois, M.: Temporal Gillespie algorithm: fast simulation of contagion processes on time-varying networks. PLoS Comput. Biol. 11(10), e1004579 (2015)CrossRefGoogle Scholar
  35. 35.
    Großmann, G., Bortolussi, L., Wolf, V.: Rejection-based simulation of non-Markovian agents on complex networks. (2019)
  36. 36.
    Ogata, Y.: On Lewis’ simulation method for point processes. IEEE Trans. Inf. Theor. 27(1), 23–31 (1981)CrossRefGoogle Scholar
  37. 37.
    Dassios, A., Zhao, H., et al.: Exact simulation of Hawkes process with exponentially decaying intensity. Electron. Commun. 18 (2013)Google Scholar
  38. 38.
    Fosdick, B.K., Larremore, D.B., Nishimura, J., Ugander, J.: Configuring random graph models with fixed degree sequences. SIAM Rev. 60(2), 315–355 (2018)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Röst, G., Vizi, Z., Kiss, I.Z.: Impact of non-Markovian recovery on network epidemics. In: BIOMAT 2015: International Symposium on Mathematical and Computational Biology, pp. 40–53. World Scientific (2016)Google Scholar
  40. 40.
    Van Mieghem, P., Van de Bovenkamp, R.: Non-Markovian infection spread dramatically alters the susceptible-infected-susceptible epidemic threshold in networks. Phys. Rev. Lett. 110(10), 108701 (2013)CrossRefGoogle Scholar
  41. 41.
    Jo, H.-H., Lee, B.-H., Hiraoka, T., Jung, W.-S.: Copula-based algorithm for generating bursty time series. arXiv preprint. arXiv:1904.08795 (2019)

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gerrit Großmann
    • 1
    Email author
  • Luca Bortolussi
    • 1
    • 2
  • Verena Wolf
    • 1
  1. 1.Saarland UniversitySaarbrückenGermany
  2. 2.University of TriesteTriesteItaly

Personalised recommendations