The Densest k Subgraph Problem in b-Outerplanar Graphs

  • Sean Gonzales
  • Theresa MiglerEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 881)


We give an exact \(O(nk^2)\) algorithm for finding the densest k subgraph in outerplanar graphs. We extend this to an exact \(O(nk^2 8^b)\) algorithm for finding the densest k subgraph in b-outerplanar graphs. Often, when there is an exact polynomial time algorithm for a problem on b-outerplanar graphs, this algorithm can be extended to a polynomial time approximation scheme (PTAS) on planar graphs using Baker’s technique. We hypothesize that this is not possible for the densest k subgraph problem.


Densest k subgraph problem Density Outerplanar graphs 



We would like to express our sincere thanks to Samuel Chase for his collaboration on our initial explorations of finding a PTAS for the densest k subgraph problem. We would like to thank our reviewer who pointed us to previous work on this problem [3].

Supplementary material


  1. 1.
    Angel, A., Sarkas, N., Koudas, N., Srivastava, D.: Dense subgraph maintenance under streaming edge weight updates for real-time story identification. Proc. VLDB Endow. 5(6), 574–585 (2012)CrossRefGoogle Scholar
  2. 2.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41, 153–180 (1994)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k-subgraph. In: WALCOM: Algorithms and Computation, pp. 114–125. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Buehrer, G., Chellapilla, K.: A scalable pattern mining approach to web graph compression with communities. In: Proceedings of the 2008 International Conference on Web Search and Data Mining, WSDM ’08, pp. 95–106. ACM, New York, NY, USA (2008)Google Scholar
  5. 5.
    Chen, J., Saad, Y.: Dense subgraph extraction with application to community detection. IEEE Trans. Knowl. Data Eng. 24(7), 1216–1230 (2010)CrossRefGoogle Scholar
  6. 6.
    Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl. Math. 9(1), 27–39 (1984)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Du, X., Jin, R., Ding, L., Lee, V.E., Thornton Jr, J.H.: Migration motif: a spatial - temporal pattern mining approach for financial markets. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’09, pp. 1135–1144. ACM, New York, NY, USA (2009)Google Scholar
  8. 8.
    Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29, 2001 (1999)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Fratkin, E., Naughton, B.T., Brutlag, D.L., Batzoglou, S.: MotifCut: regulatory motifs finding with maximum density subgraphs. Bioinformatics 22, 150–157 (2006)CrossRefGoogle Scholar
  10. 10.
    Gibson, D., Kleinberg, J., Raghavan, P.: Inferring web communities from link topology. In: Proceedings of the Ninth ACM Conference on Hypertext and Hypermedia : Links, Objects, Time and Space—Structure in Hypermedia Systems: Links, Objects, Time and Space—Structure in Hypermedia Systems, HYPERTEXT ’98, pp. 225–234. ACM, New York, NY, USA (1998)Google Scholar
  11. 11.
    Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB ’05, pp. 721–732. VLDB Endowment (2005)Google Scholar
  12. 12.
    Goldberg, A.V.: Finding a maximum density subgraph. Technical report, University of California at Berkeley, Berkeley, CA, USA (1984)Google Scholar
  13. 13.
    Mark Keil, J., Brecht, T.B.: The complexity of clustering in planar graphs. J. Comb. Math. Comb. Comput. 9, 155–159 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Langston, M.A., Lin, L., Peng, X., Baldwin, N.E., Symons, C.T., Zhang, B., Snoddy, J.R.: A combinatorial approach to the analysis of differential gene expression data: the use of graph algorithms for disease prediction and screening. In: Methods of Microarray Data Analysis IV, pp. 223–238. Springer (2005)Google Scholar
  15. 15.
    Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.California Polytechnic State UniversitySan Luis ObispoUSA

Personalised recommendations