Advertisement

Quantifying Life Quality as Walkability on Urban Networks: The Case of Budapest

  • Luis Guillermo Natera OrozcoEmail author
  • David Deritei
  • Anna Vancso
  • Orsolya Vasarhelyi
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)

Abstract

Life quality in cities is deeply related to the mobility options, and how easily one can access different services and attractions. The pedestrian infrastructure network provides the backbone for social life in cities. While there are many approaches to quantify life quality, most do not take specifically into account the walkability of the city, and rather offer a city-wide measure. Here we develop a data-driven, network-based method to quantify the liveability of a city. We introduce a life quality index (LQI) based on pedestrian accessibility to amenities and services, safety and environmental variables. Our computational approach outlines novel ways to measure life quality in a more granular scale, that can become valuable for urban planners, city officials and stakeholders. We apply data-driven methods to Budapest, but as having an emphasis on the online and easily available quantitative data, the methods can be generalized and applied to any city.

Keywords

Walkability Urban networks Urban development Life quality 

Notes

Acknowledgments

The authors wish to thank the experts of KKBK for consultations, and Federico Battiston and Gerardo Iñiguez for comments and discussions on the subject.

References

  1. 1.
    Jacobs, J.: The Death and Life of Great American Cities. Random House, New York (1961)Google Scholar
  2. 2.
    Gössling, S., Schröder, M., Späth, P., Freytag, T.: Urban space distribution and sustainable transport. Transp. Rev. 36(5), 659–679 (2016)CrossRefGoogle Scholar
  3. 3.
    Szell, M.: Crowdsourced quantification and visualization of urban mobility space inequality. Urban Plan. 3(1), 1 (2018)CrossRefGoogle Scholar
  4. 4.
    Heylen, K.: Liveability in social housing: three case-studies in Flanders. Paper Presented at the ENHR Conference “Housing in an Expanding Europe: Theory, Policy, Participation and Implementation”, July 2006Google Scholar
  5. 5.
    Shamsuddin, S., Hassan, N.R.A., Bilyamin, S.F.I.: Walkable environment in increasing the liveability of a city. Proc. Soc. Behav. Sci. 50(167–178), 169 (2012)Google Scholar
  6. 6.
    Campbell, S.: Green cities, growing cities, just cities?: urban planning and the contradictions of sustainable development. J. Am. Plan. Assoc. 62(3), 296–312 (1996)CrossRefGoogle Scholar
  7. 7.
    Jabareen, Y.: Planning the resilient city: concepts and strategies for coping with climate change and environmental risk. Cities 31, 220–229 (2013)CrossRefGoogle Scholar
  8. 8.
    Frank, L.D., Sallis, J.F., Conway, T.L., Chapman, J.E., Saelens, B.E., Bachman, W.: Many pathways from land use to health: associations between neighborhood walkability and active transportation, body mass index, and air quality. J. Am. plan. Assoc. 72(1), 75–87 (2006)CrossRefGoogle Scholar
  9. 9.
    Speck, J.: Walkable City: How Downtown Can Save America, One Step at a Time. North Point Press, New York (2012)Google Scholar
  10. 10.
    Porta, S., Crucitti, P., Latora, V.: The network analysis of urban streets: a primal approach. Environ. Plan. 33(5), 705–726 (2006)CrossRefzbMATHGoogle Scholar
  11. 11.
    Barthelemy, M., Flammini, A.: Modeling urban street patterns. Phys. Rev. Lett. 100(13) 138702 (2008)Google Scholar
  12. 12.
    Louf, R., Barthelemy, M.: A typology of street patterns. J. R. Soc. Interface 11(101), 20140924 (2014)CrossRefGoogle Scholar
  13. 13.
    Strano, E., Nicosia, V., Latora, V., Porta, S., Barthélemy, M.: Elementary processes governing the evolution of road networks. Sci. Rep. 2(1), 296 (2012)CrossRefGoogle Scholar
  14. 14.
    Barthelemy, M., Bordin, P., Berestycki, H., Gribaudi, M.: Self-organization versus top-down planning in the evolution of a city. Sci. Rep. 3(1), 2153 (2013)CrossRefGoogle Scholar
  15. 15.
    Boeing, G.: The morphology and circuity of walkable and drivable street networks. In: Modeling and Simulation in Science, Engineering and Technology, pp. 271–287, Birkhäuser, Cham (2019)Google Scholar
  16. 16.
    Hajrasouliha, A., Yin, L.: The impact of street network connectivity on pedestrian volume. Urban Stud. 52(13), 2483–2497 (2015)CrossRefGoogle Scholar
  17. 17.
    Daniele, Q., Aiello, L.M., Schifanella, R., Davies, A.: The digital life of walkable streets. In: Proceedings of International World Wide Web Conference (2015)Google Scholar
  18. 18.
    Silva, J.P., Akleh, A.Z.: Investigating the relationships between the built environment, the climate, walkability and physical activity in the Arabic peninsula: the case of Bahrain. Cogent Soc. Sci. 4(1), 1–21 (2018)Google Scholar
  19. 19.
    Krambeck, H.V.: The global walkability index (Doctoral dissertation). Massachusetts Institute of Technology (2006)Google Scholar
  20. 20.
    Southworth, M.: Designing the walkable city. J. Urban Plan. Dev. 131(4), 246–257 (2005)CrossRefGoogle Scholar
  21. 21.
    Carr, L.J., Dunsiger, S.I., Marcus, B.H.: Walk score™as a global estimate of neighborhood walkability. Am. J. Prev. Med. 39(5), 460–463 (2010)CrossRefGoogle Scholar
  22. 22.
    Stephen, M.: A Better Urban Design of Cities is Closely to Sustainable Planning. Rutledge Urban Reader Series, United States (2004)Google Scholar
  23. 23.
    Childs, S.: A Case for Data-Driven City Planning Neighborhood Knowledge Supports Resilient Communities. https://medium.com/citiesense/a-case-for-data-driven-city-planning-8cd7d9332a (2018)
  24. 24.
    Kaushik, V.: How Technology Empowers Data-Driven Urban Planning? https://www.getrevue.co/profile/TGIC/issues/how-technology-empowers-data-driven-urban-planning-59814 (2017)
  25. 25.
    Fitzgerald, M.: Data-Driven City Management A Close Look At Amsterdam Smart City Initiative. MIT Sloan Management Review (2016)Google Scholar
  26. 26.
    Boeing, G.: OSMnx: new methods for acquiring, constructing, analyzing, and visualizing complex street networks. Comput. Environ. Urban Syst. 65, 126–139 (2017)CrossRefGoogle Scholar
  27. 27.
    Haklay, M.: How good is volunteered geographical information? a comparative study of OpenStreetMap and ordnance survey datasets. Environ. Plan. 37(4), 682–703 (2010)CrossRefGoogle Scholar
  28. 28.
    Girres, J.F., Touya, G.: Quality assessment of the French OpenStreetMap Dataset. Trans. GIS 14(4), 435–459 (2010) CrossRefGoogle Scholar
  29. 29.
    Ferster, C., Fischer, J., Manaugh, K., Nelson, T., Winters, M.: Using OpenStreetMap to inventory bicycle infrastructure: a comparison with open data from cities. Int. J. Sustain. Transp. 1–10 (2019)Google Scholar
  30. 30.
    Barbosa-Filho, H., Barthelemy, M., Ghoshal, G., James, C.R., Lenormand, M., Louail, T., Menezes, R., Ramasco, J.J., Simini, F., Tomasini, M.: Models and applications: human mobility (2017)Google Scholar
  31. 31.
  32. 32.
    Official Site of the Hungarian Police. http://www.police.hu/a-rendorsegrol/statisztikak/bunugyi-statisztikak. Data Available at request
  33. 33.
    Hungarian popultaion data 2016. https://www.ksh.hu/mikrocenzus2016/
  34. 34.
    National Air Pollution Measurement Network, Automatic Measurement Network, Hungary. http://levegominoseg.hu/manualis-merohalozat. Data Available at request
  35. 35.
    Rosow, I.: The social effects of the physical environment. J. Am. Inst. Plann. 27(2), 127–133 (1961)CrossRefGoogle Scholar
  36. 36.
    Kahneman, D., Krueger, A.B.: Developments in the measurement of subjective well-being. J. Econ. Perspect. 20(1), 3–24 (2006)CrossRefGoogle Scholar
  37. 37.
    Erwing, M.: The graph Voronoi diagram with applications. Netw.: Int. J. 36(3), 156–163 (2000)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Deritei, D., Lazar, Z.I., Papp, I., Jarai-Szabo, F., Sumi, R., Varga, L., Regan, E.R., Ercsey-Ravasz, M.: Community detection by graph Voronoi diagrams. New J. Phys. 16, 063007 (2014)CrossRefGoogle Scholar
  39. 39.
  40. 40.
    Hohenberg, P.M., Lees, L.H.: The Making of Urban Europe 1000–1950. Harvard University Press, Cambridge (1986)Google Scholar
  41. 41.
    Bruecknera, J.K., Thisse bc, J.F., Zenou bd, Y.: Why is central Paris rich and downtown Detroit poor?: an amenity-based theory. Eur. Econ. Rev. 43(1), 91–107 (1999)Google Scholar
  42. 42.
    Gyani, G., Kover, G.: Magyarorszag tarsadalomtortenete a reformkortol a masodik vilaghaboriig. 2. jav. kiad. Osiris, Budapest (1998)Google Scholar
  43. 43.
    Dittmar, H., Ohland, G.: The new transit town: best practices in transit-oriented development. Island Press (2012)Google Scholar
  44. 44.
    Rogers, S.H., Halstead, J.M., Gardner, K.H., Carlson, C.H.: Examining walkability and social capital as indicators of quality of life at the municipal and neighborhood scales. Appl. Res. Qual. Life 6(2), 201–213 (2011)CrossRefGoogle Scholar
  45. 45.
    Rinner, C.: A geographic visualization approach to multicriteria evaluation of urban quality of life. Int. J. Geogr. Inf. Sci. 21(8), 907–919 (2007)CrossRefGoogle Scholar
  46. 46.
    Gavrilidis, A.A., et al.: Urban landscape quality index planning tool for evaluating urban landscapes and improving the quality of life. Proc. Environ. Sci. 32, 155–167 (2016)CrossRefGoogle Scholar
  47. 47.
    Talen, E.: Pedestrian access as a measure of urban quality. Plan. Pract. Res. 17(3), 257–278 (2002)CrossRefGoogle Scholar
  48. 48.
    Santos, L.D., Martins, I.: Monitoring urban quality of life: the porto experience. Soc. Indic. Res. 80, 411 (2007)CrossRefGoogle Scholar
  49. 49.
    Roback, J.: Wages, rents, and the quality of life. J. Polit. Econ. 90(6), 1257–1278 (1982)CrossRefGoogle Scholar
  50. 50.
    Blomquist, G., Berger, M., Hoehn, J.: New estimates of quality of life in urban areas. Am. Econ. Rev. 78(1), 89–107 (1988)Google Scholar
  51. 51.
    Lora, E., Powell, A.: A new way of monitoring the quality of urban life. IDB working paper series, 272 (2011)Google Scholar
  52. 52.
    Budapest Real Estate Statistics. https://www.ingatlannet.hu/statisztika/Budapest
  53. 53.
    Cassiers, T., Kesteloot, C.: Socio-spatial inequalities and social cohesion in European cities. Urban Stud. 49(9), 1909–1924 (2012)CrossRefGoogle Scholar
  54. 54.
    Garcia, B.: Cultural policy and urban regeneration in Western European cities: lessons from experience, prospects for the future. Local Econ. 19(4), 312–326 (2004)CrossRefGoogle Scholar
  55. 55.
    Gobillon, L., Selod, H., Zenou, Y.: The mechanisms of spatial mismatch. Urban Stud. 44, 2401–2427 (2007)CrossRefGoogle Scholar
  56. 56.
    Sport associations in Budapest. https://sportmegoldasok.hu/klub_budapest.ht. Accessed 01 Jan 2019
  57. 57.
    Kindergartens & daycare, primary education, secondary education. http://budapest.imami.hu/iskolak-ovodak-bolcsodek/. Accessed 01 Jan 2019
  58. 58.
  59. 59.
    Pediatricians, Gynecologists. http://budapest.imami.hu/egeszseg. Accessed 01 Jan 2019
  60. 60.
    Social Welfare. http://szocialisportal.hu/intezmenykereso. Accessed 01 Jan 2019
  61. 61.
  62. 62.
    Indoor playgrounds. http://budapest.imami.hu/szolgaltatok/szulinapi-party. Accessed 01 Jan 2019
  63. 63.
    Healthcare (hospitals, private and public clinics, specialists). https://www.budapestinfo.eu/gyogyitas. Accessed 01 Jan 2019
  64. 64.
    Fitness and Training facilities. https://www.budapestinfo.eu/sportolas/fitnesstermek. Accessed 01 Jan 2019
  65. 65.
  66. 66.
    Thermal and Spa. https://www.budapestinfo.eu/furdozes. Accessed 01 Jan 2019
  67. 67.
    Playgrounds and Park. https://zoldkalauz.hu/. Accessed 01 Jan 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luis Guillermo Natera Orozco
    • 1
    Email author
  • David Deritei
    • 1
  • Anna Vancso
    • 2
  • Orsolya Vasarhelyi
    • 1
  1. 1.Department of Network and Data ScienceCentral European UniversityBudapestHungary
  2. 2.Corvinus University of BudapestBudapestHungary

Personalised recommendations