Comparing Traditional Methods of Complex Networks Construction in a Wind Farm Production Analysis Problem

  • Sara Cornejo-Bueno
  • Mihaela Ioana Chidean
  • Antonio J. Caamaño
  • Luís Prieto
  • Sancho Salcedo-SanzEmail author
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)


This work presents a comparison between two methods for complex networks construction (cross-correlation and Mutual Information based), in the assessment of wind speed prediction efficiency at different wind farms in Spain. The approach is accomplished at mesoscale, for wind speed prediction data provided by the Weather Research and Forecasting (WRF) numerical model versus the actual wind speed measurements in the wind farms. Some important differences are found in the complex networks obtained, and the corresponding global measures from them, such as the betweenness and closseness centrality. We have found out that the mutual information method better captures nonlinear relationships of the problem, obtaining complex networks with fewer spurious links than the cross-correlation based method.


Climate networks construction Wind farms Complex networks construction Wind power prediction 



This research has been partially supported by the Ministerio de Economía y Competitividad of Spain (Grant Ref. TIN2017-85887-C2-2-P).


  1. 1.
    Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Karrer, B., Newman, M.E.: Competing epidemics on complex networks. Phys. Rev. E 84(3), 036106 (2011)CrossRefGoogle Scholar
  3. 3.
    Wang, H., Wang, Z., Li, J., Wei, Q.: Criminal behavior analysis based on complex networks theory. In: IEEE International Symposium on IT in Medicine and Education, Jinan, vol. 1, pp. 951–955 (2009)Google Scholar
  4. 4.
    Yamasaki, K., Gozolchiani, A., Havlin, S.: Climate networks around the globe are significantly affected by El Nino. Phys. Rev. Lett. 100(22), 228501 (2008)CrossRefGoogle Scholar
  5. 5.
    Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Complex networks in climate dynamics. Comparing linear and nonlinear network construction methods. Eur. Phys. J. Special Topics 174, 157–179 (2009)CrossRefGoogle Scholar
  6. 6.
    Ludescher, J., Gozolchiani, A., Bogachev, M.I., Bunde, A., Havlin, S., Schellnhuber, H.J.: Improved El Nino forecasting by cooperativity detection. Proc. Natl. Acad. Sci. USA 110(29), 11742–11745 (2013)CrossRefGoogle Scholar
  7. 7.
    Deza, J.I., Masoller, C., Barreiro, M.: Distinguishing the effects of internal and forced atmospheric variability in climate networks. arXiv preprint arXiv: 1311.3089 (2013)
  8. 8.
    Tsonis, A.A., Swanson, K.L.: Topology and predictability of EI Niño and La Niña networks. Phys. Rev. Lett. 100(22), 228502 (2008)CrossRefGoogle Scholar
  9. 9.
    Naufan, I., Sivakumar, B., Woldemeskel, F.M., Raghavan, S.V., Vu, M.T., Liong, S.Y.: Spatial connections in regional climate model rainfall outputs at different temporal scales: application of network theory. J. Hydrol. 556, 1232–1243 (2017)CrossRefGoogle Scholar
  10. 10.
    Boers, N., Rheinwalt, A., Bookhagen, B., Barbosa, H.M.J., Marwan, N., Marengo, J., Kurths, J.: The South American rainfall dipole: a complex network analysis of extreme events. Geophys. Res. Lett. 41(20), 7397–7405 (2014)CrossRefGoogle Scholar
  11. 11.
    Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: The backbone of the climate network. Europhys. Lett. 87(4), 48007 (2009)CrossRefGoogle Scholar
  12. 12.
    Tsonis, A.A., Swanson, K.L., Roebber, P.J.: What do networks have to do with climate? Bull. Am. Meteorol. Soc. 87(5), 585–596 (2006)CrossRefGoogle Scholar
  13. 13.
    Chidean, M.I., Bulnes, J.M., Bargueño, J.R., Caamaño, A.J., Salcedo-Sanz, S.: Spatio-temporal trend analysis of air temperature in Europe and Western Asia using data-coupled clustering. Glob. Planet. Change 129, 45–55 (2015)CrossRefGoogle Scholar
  14. 14.
    Guez, O.C., Gozolchiani, A., Havlin, S.: Influence of autocorrelation on the topology of the climate network. Phys. Rev. E 90(6), 06281 (2014)CrossRefGoogle Scholar
  15. 15.
    Davis, K.F., D’Odorico, P., Laio, F., Ridolfi, L.: Global spatio-temporal patterns in human migration: a complex network perspective. PLoS ONE 8(1), 1–8 (2013)Google Scholar
  16. 16.
    Hlinka, J., Hartman, D., Vejmelka, M., Runge, J., Marwan, N., Kurths, J., Palus, M.: Reliability of inference of directed climate networks using conditional mutual information. Entropy 15, 2023–2045 (2013)MathSciNetCrossRefGoogle Scholar
  17. 17.
    National Center for Atmospheric Research.
  18. 18.
    Carvalho, D., Rocha, A., Gómez-Gesteira, M., Santos, C.S.: WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal. Appl. Energy 117, 116–126 (2014)CrossRefGoogle Scholar
  19. 19.
    Memon, Z.A., Sahito, A.A., Leghari, Z.H., Shaikh, P.H.: Output voltage characteristics of wind energy system considering wind speed and number of blades. Sindh Univ. Res. J. (Sci. Ser.) 2, 281–284 (2016)Google Scholar
  20. 20.
    Goh, K.I., Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification of scale-free networks. Proc. Nat. Acad. Sci. 99(20), 12583–12588 (2002)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sara Cornejo-Bueno
    • 1
  • Mihaela Ioana Chidean
    • 1
  • Antonio J. Caamaño
    • 1
  • Luís Prieto
    • 2
  • Sancho Salcedo-Sanz
    • 3
    Email author
  1. 1.Department of Signal Processing and CommunicationsUniversidad Rey Juan CarlosFuenlabradaSpain
  2. 2.IberdrolaBilbaoSpain
  3. 3.Department of Signal Processing and CommunicationsUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations