Advertisement

Why We Need a Process-Driven Network Analysis

  • Mareike BockholtEmail author
  • Katharina A. Zweig
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 882)

Abstract

A network representation is a powerful abstraction of a complex system, on which a full range of readily available methods from network analysis can be applied. A network representation is suitable if indirect effects are of interest: if A has an impact on B and B has an impact on C, it is assumed that also A has an impact on C. This implies that some process is flowing through the network. For a meaningful network analysis, the network process, the network representation, and the applied network measure cannot be chosen independently [3, 4, 9, 30]. We propose a process-driven perspective on network analysis, which takes into account the network process additionally to the network representation. In order to show the necessity of this approach, we collected four data sets of real-world processes. As first step, we show that the assumptions of standard network measures about the properties of a network process are not fulfilled by the real-world process data. As second step, we compare the network usage pattern by real-world processes to the usage pattern of the corresponding shortest paths and random walks. Our results support the importance of a process-driven network analysis.

Keywords

Network analysis Network processes Dynamics on networks Paths 

References

  1. 1.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bockholt, M., Zweig, K.A.: Process-driven betweenness centrality measures. In: Network Intelligence Meets User Centered Social Media Networks. Lecture Notes in Social Networks, pp. 17–33. Springer (2018)Google Scholar
  3. 3.
    Borgatti, S.P.: Centrality and network flow. Soc. Netw. 27(1), 55–71 (2005)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Butts, C.T.: Revisiting the foundations of network analysis. Science 325(5939), 414–416 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Choudhury, M.D., Mason, W.A., Hofman, J.M., Watts, D.J.: Inferring relevant social networks from interpersonal communication. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010. ACM Press (2010)Google Scholar
  6. 6.
    Christakis, N.A., Fowler, J.H.: The collective dynamics of smoking in a large social network. N. Engl. J. Med. 358(21), 2249–2258 (2008). PMID: 18499567CrossRefGoogle Scholar
  7. 7.
    Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline transportation network in the prediction and predictability of global epidemics. Proc. Nat. Acad. Sci. 103(7), 2015–2020 (2006)CrossRefGoogle Scholar
  8. 8.
    De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific rumor. Sci. Rep. 3, 2980 (2013)CrossRefGoogle Scholar
  9. 9.
    Dorn, I., Lindenblatt, A., Zweig, K.A.: The trilemma of network analysis. In: Proceedings of the International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 9–14 (2012)Google Scholar
  10. 10.
    Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)CrossRefGoogle Scholar
  11. 11.
    Friedkin, N.E.: Horizons of observability and limits of informal control in organizations. Soc. Forces 62(1), 54–77 (1983)CrossRefGoogle Scholar
  12. 12.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Guille, A., Hacid, H., Favre, C., Zighed, D.A.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  14. 14.
    Guimerá, R., Amaral, L.A.N.: Modeling the world-wide airport network. Eur. Phys. J. B 38(2), 381–385 (2004)CrossRefGoogle Scholar
  15. 15.
    Jarušek, P., Pelánek, R.: Analysis of a simple model of problem solving times. In: Intelligent Tutoring Systems, volume 7315 of Lecture Notes in Computer Science, pp. 379–388. Springer (2012)Google Scholar
  16. 16.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. Lecture Notes in Computer Science, vol. 3418, pp. 16–61. Springer (2005)Google Scholar
  17. 17.
    Milo, R.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)CrossRefGoogle Scholar
  18. 18.
    Newman, M.E.: A measure of betweenness centrality based on random walks. Soc. Netw. 27(1), 39–54 (2005)CrossRefGoogle Scholar
  19. 19.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab (1999)Google Scholar
  20. 20.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86(14), 3200–3203 (2001)CrossRefGoogle Scholar
  21. 21.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: Computer and Information Sciences, pp. 284–293. Springer (2005)Google Scholar
  22. 22.
    RITA TransStat. Origin and Destination Survey database (DB1B) (2016). https://www.transtats.bts.gov/DatabaseInfo.asp?DB_ID=125
  23. 23.
    Rocha, L.E.C., Liljeros, F., Holme, P.: Simulated epidemics in an empirical spatiotemporal network of 50,185 sexual contacts. PLoS Comput. Biol. 7(3), e1001109 (2011)CrossRefGoogle Scholar
  24. 24.
    Rosvall, M., Esquivel, A., Lancichinetti, A., et al.: Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 4630 (2014).  https://doi.org/10.1038/ncomms5630 CrossRefGoogle Scholar
  25. 25.
    Scholtes, I.: When is a network a network? In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2017. ACM Press (2017)Google Scholar
  26. 26.
    Transport for London. Rolling Origin and Destination Survey (RODS) (2017). http://www.tfl.gov.uk/info-for/open-data-users/our-feeds
  27. 27.
    Weng, L., Ratkiewicz, J., Perra, N., Gonçalves, B., Castillo, C., Bonchi, F., Schifanella, R., Menczer, F., Flammini, A.: The role of information diffusion in the evolution of social networks. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2013, pp. 356–364. ACM Press (2013)Google Scholar
  28. 28.
    West, R., Leskovec, J.: Human wayfinding in information networks. In: Proceedings of the 21st International Conference on World Wide Web, pp. 619–628. ACM Press (2012)Google Scholar
  29. 29.
    Xu, J., Wickramarathne, T.L., Chawla, N.V.: Representing higher-order dependencies in networks. Sci. Adv. 2(5), e1600028 (2016)CrossRefGoogle Scholar
  30. 30.
    Zweig, K.A.: Network Analysis Literacy. Springer, Vienna (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Computer Science, Algorithm Accountability LabTU KaiserslauternKaiserslauternGermany

Personalised recommendations